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Abstract— Existing control paradigms for lower-limb ex-
oskeletons aim at replicating task-specific, subject-dependent
reference kinematics, which overly constrain voluntary human
motion. Individuals with voluntary control over their lower-
extremities would likely benefit from the ability to choose their
gait patterns freely while being assisted by exoskeletons during
locomotion. In this paper, we propose a novel control paradigm
and its implementation to alter an individual’s Centroidal
Momentum, i.e., a sum of projected limb momenta onto the
human’s center of mass, through tracking a dynamic reference
Centroidal Momentum to provide consistent assistance across
tasks. This reference Centroidal Momentum is defined based on
a virtual reference model that has identical gaits self-selected
by an individual and scaled inertial parameters, rather than
reference trajectories. The resulting control strategy does not
prescribe to any joint-level reference kinematics, providing
flexibility for human users meanwhile providing assistance.
We demonstrate experimental results on five non-disabled
human subjects wearing a bilateral hip exoskeleton performing
various walking tasks under different speed and incline/decline
conditions. The results show that the generated exoskeleton
assistance/resistance based on the proposed shaping strategy
can reduce/increase the subjects’ muscular efforts with the same
set of control parameters, respectively, across the performed
tasks.

I. INTRODUCTION

Emerging powered lower-limb exoskeletons have demon-
strated great potential in assisting humans for various activities
[1]. Depending on the intended control and design goals,
they can help bear the weight of extra loads [2], reduce
energy expenditure [3], and restore normative gait kinematics
[4]. The vast majority of existing control paradigms are
trajectory-based that replicate reference kinematics for human
user’s joints [5], which are appropriate for individuals with
neurological injuries that prevent voluntary generation of
lower extremity motions [5]. For individuals with partial or
full voluntary control over their lower extremities, control
paradigms would ideally enable exoskeletons to provide
assistance without confining to their preferred gaits for
facilitating adaptability to various walking patterns [1].

Trajectory-free control approaches do not confine user’s
joint motion to specific reference kinematics, therefore
allowing users greater flexibility in selecting their preferred
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gaits [1]. For instance, human muscle activations can be
measured via Electromyographic (EMG) sensors and used
as feedback for exoskeleton control design to assist human
locomotion [6], [7]. However, performance of EMG sensors
is susceptible and sensitive to measurement noises, placement
of electrodes, and sweating [8]. Alternatively, predictive
control paradigms can predict a user’s walking patterns using
plantar forces [9] to provide adaptive assistance without
predefined trajectories. However, their effectiveness depends
on prediction accuracy, and estimation errors can potentially
lead to control failures [10]. Biological torque compensation is
also widely used to augment voluntary motion, e.g., Molinaro
et al. proposed a deep learning-based method to estimate
and compensate for biological joint torques in real-time [11].
However, these methods usually require extensive training
data that could be difficult to obtain.

Recent advancements in energetic control methods have
started to emphasize task invariance. In particular, energy
shaping and passivity-based control methods [12]–[14] can
enable exoskeletons to provide task-invariant assistance
through dynamically altering human body energetics. While
independent of reference trajectories, such methods require
the solution of matching conditions to determine achievable
closed-loop dynamics in the case of underactuation [13],
which can be very challenging to obtain given varying de-
grees of underactuation during human locomotion. Although
there exist other trajectory-independent, energetic control
paradigms, they are specifically proposed for dedicated tasks
such as sit-to-stand [15], stair ascent [16], or level-ground
walking [3]. It remains unclear if these control paradigms
can still demonstrate the same efficacy when translated to
continuously varying daily activities.

As a commonly used metric in locomotion [17], Centroidal
Momentum (CM), the sum of projected segmental momenta
onto a robot’s Center of Mass (CoM) [18], are often used
in the control design for both bipeds and quadrupeds [17],
[19]. CM has also been used as an index to evaluate the
stability of human gaits [20], performance of balance recovery
strategies [21], and incorporated in models that predict
human CoM trajectory during sit-to-stand motion [22]. CM
is consistently represented as a six-dimensional vector in
3D space regardless of biped models or walking gaits [18],
which can be advantageous in designing control strategies.
As long as the exoskeleton actuators span three anatomical
planes, we can guarantee the existence of a control law to
alter a human’s CM even for underactuated systems. Control
allocation (i.e., achieving a desired CM with specific actuators)
can also be realized, which is usually feasible when the



system is overactuated [23]. Finally, altering a human’s CM
via an exoskeleton does not prescribe to joint-level reference
kinematics, which has the potential to generate task-invariant
assistance and promote voluntary human motion.

In this paper, we propose a control method (called CM
shaping) to alter a human’s CM for providing task-invariant
assistance. The control law is yielded through tracking the
desired CM based on a virtual reference model, whose
joint kinematics are identical to an individual’s self-selected
gaits and limb inertial parameters are scaled versions of
the individual’s parameters. Through tracking this reference
CM via exoskeleton actuators, we can mimic behaviors of
the virtual reference model that has reduced/increased body
weight compared to the human user (Fig. 1). We adopted
a nonlinear disturbance observer (NDO) to estimate human
joint torques and utilize this information in the overall control
design. We implemented the proposed shaping strategy on a
powered bilateral hip exoskeleton with highly backdrivable
actuators, and conducted experiments with five non-disabled
participants performing various walking tasks under different
combinations of speeds and inclines/declines. Preliminary
Experimental results demonstrate that the proposed CM shap-
ing strategy generates assistance/resistance to reduce/increase
muscular efforts across tasks.
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Fig. 1: Through shaping the CM of an individual via
exoskeleton torque u, we can mimic the CM of a lighter
person (right) for possible gait benefits.

II. DYNAMICS & CONTROL METHOD

A. Biped Dynamics

We model a human wearing an exoskeleton as one whole
biped and express its Euler-Lagrange dynamics as [24]

Mq̈+Cq̇+N +AT
λ = τ, (1)

where n denotes the number of degrees of freedom (DoFs),
q ∈ Rn is the configuration vector that will be specified in
Sec. IV, M ∈ Rn×n is the positive-definite inertia matrix,
C ∈ Rn×n is the Coriolis/centrifugal matrix, and N ∈ Rn

denotes the gravitational force vector. The constraint matrix
A, defined as the gradient of holonomic constraint functions,
maps the ground reaction force vector λ = λ̂ + λ̌ τ into
the overall dynamics, where λ̂ = W (Ȧq̇ − AM−1N), W =
(AM−1AT )−1, and λ̌ =WAM−1 [24]. All inertial parameters
in these matrices combine the human and exoskeleton values.

The overall torque τ sums up two parts: the human joint
torque vector τhum and the exoskeleton input τexo =Bu, where
B = (0p×n−p, Ip×p)

T ∈ Rn×p is the mapping matrix for the
exoskeleton torque u ∈ Rp.

B. Centroidal Momentum of the Biped

For a multi-link biped, the velocity vector vG of each biped
link with respect to its body frame is given as

vG = JGq̇ ∈ R6j, JG = [JT
1 ,J

T
2 , · · · ,JT

j ]
T , (2)

where JG ∈ R6j×n is the system Jacobian matrix composed
of body Jacobian matrices Ji ∈ R6×n, i ∈ {1,2, · · · , j} for all
j links [24]. The body momentum vector hbody ∈ R6j that
contains the body momentum of each link is then given as

hbody = IGvG, IG = diag{IG1, IG2, · · · , IG j}, (3)

where IG ∈ R6j×6j is composed of inertia tensor matrices
IGi = diag{mi · I3×3, Ii · I3×3} ∈R6×6, i ∈ {1,2,3, · · · , j} with
mi and Ii being the mass and moment of inertia of the i-
th link, respectively. Finally, we project the body momenta
vector hbody onto the biped’s CoM to yield the CM as

hG = XT
G hbody ∈ R6, (4)

where XG ∈R6j×6 is the system adjoint transformation matrix
[18]. Substituting (2) and (3) into (4), the CM of a multi-link
biped can be expressed as

hG = XT
G IGJGq̇ := AGq̇, (5)

where AG = XT
G IGJG ∈ R6×n [18].

C. Centroidal Momentum Shaping

We propose the following relationship between reference
CM href

G , hG, and their derivatives as:

ḣref
G − ḣG +Kp(href

G −hG) = 0, (6)

where Kp ∈ R6×6 is a positive-definite diagonal matrix. We
propose this definition to track the change rate of href

G
meanwhile minimizing the difference between hG and href

G ,
which is generated only after a human starts walking. Similar
to following a target vehicle with varying speeds, we hope
to achieve the same velocity for the follower vehicle rather
than a desired position over time. Taking the time derivative
of href

G yields

href
G = Aref

G q̇, ḣref
G = Ȧref

G q̇+Aref
G q̈ref, (7)

where q̈ref in (7) can be obtained from a virtual reference
model

Mrefq̈ref +Crefq̇+Nref +AT
λ

ref = τhum. (8)

The matrices Mref, Cref, Nref, and λ ref in (8) are defined
similarly to the ones in (1) but with mi and Ii scaled ki ∈R+

times, i.e., mref
i = kimi and Iref

i = kiIi. Note that this virtual
reference model shares the same joint kinematics as (1), i.e.,
both models have identical gaits. Intuitively, selecting ki < 1
and ki > 1 will generate assistance and resistance, respectively,
as the reference CM will be defined to reflect behaviors of



a heavier or a lighter individual. Equating ḣG in (6) with
ȦGq̇+AGq̈, we obtain

ḣref
G −AGq̈− ȦGq̇+Kp(Aref

G q̇−AGq̇) = 0. (9)

In this paper, the hip exoskeleton we used (to be introduced
later in Sec. III) is only equipped with sagittal-plane actuators
to assist hip flexion/extension. With this limitation, the CM’s
linear component along the z-axis, and the angular momenta
around x and y axes are zeros. Therefore, AG contains
only three non-zero rows that can be shaped, which further
simplifies (9) into three equivalent equations. If an exoskeleton
has more than three actuators in the sagittal plane, then there
exists an infinite amount of solutions to the control law u
that can alter linear components in x-y plane and the angular
momentum around the z axis. We can specify a solution via
an optimization procedure:

min
u

uTWu

s.t. ḣref
G −AGq̈− ȦGq̇+Kp(Aref

G q̇−AGq̇) = 0,
umin ≤ ||u||2 ≤ umax,

where W ∈Rp×p is a diagonal, positive-definite weight matrix,
umin, umax ∈R are the lower and upper control torque bounds,
respectively. The objective function is selected as uTWu to
minimize torques exerted by the exoskeleton actuators for
energy efficient solutions. Additionally, the weight matrix
W can be adjusted to achieve control allocation for specific
joints. The above optimization problem can be solved by
using the Lagrange multiplier method [25].

Let η ∈ Rm be the Lagrange multiplier with m being
the number of non-zero elements to be shaped in CM, the
Lagrangian L is defined as

L(u,η) = uTWu−η
T (−AGq̈+Y ). (10)

where Y =−ȦGq̇+ ḣref
G +Kp(Aref

G q̇−AGq̇). Setting the gradi-
ent of L with respect to u and η to zero, i.e.,

∂L

∂u
= 0,

∂L

∂η
= 0, (11)

the CM shaping law is obtained as

u∗ = W−1DT (DW−1DT )−1(AGM−1H +Y ), (12)

where D = AGM−1Bλ , Bλ = B−AT λ̌ , H =Cq̇+N+AT λ̂ −
τ̃hum, and τ̃hum = (I −AT λ̌ )τhum.

D. Nonlinear Disturbance Observer

The proposed CM shaping strategy (12) requires knowledge
of τhum, which can be difficult to measure in practice. We
modify an existing model-based NDO [26] to estimate human
joint torques based on angular information. The required
sensors for measurements will be discussed in Sec. III-B.
Defining z = M−1τ̃hum as the term that needs to be estimated
and left-multiplying M−1 at both sides of (1), we have

z = q̈+M−1Cq̇+M−1N +M−1AT
λ̂ −M−1Bλ u. (13)

Denoting ẑ as the estimate for z and e= z− ẑ as the estimation
error, we have [27]:

˙̂z = Le = L(z− ẑ), (14)

where L ∈Rn×n can be chosen as a positive-definite, diagonal
matrix to guarantee uniformly ultimate boundness and fast
convergence of e [27] that is governed by

ė = ż− ˙̂z = ż−Le. (15)

We will demonstrate the performance of the proposed NDO
later in Sec. IV-D.

III. BILATERAL HIP EXOSKELETON SYSTEM

To demonstrate efficacy of the proposed method, we
implemented the CM shaping strategy (12) on a bilateral,
powered hip exoskeleton with highly backdrivable (i.e., low
mechanical impedance) actuators, with inertial measurement
units (IMUs) mounted on thigh and shank for kinematic
measurements (Fig. 2, left). In this section, we introduce the
overall structure of the exoskeleton control system.
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Fig. 2: A subject wearing SportsMate 5 with IMUs (left) and
the 4-DoF experimental model (right).

A. SportsMate 5 Exoskeleton

SportsMate 5 (Enhanced Power Technology Co., Ltd.,
Shenzhen, China) has two brushless direct current motors
that can produce 7.5 Nm continuous torque (22.5 Nm peak
torque) after a 25:1 transmission ratio. The actuators are
highly backdrivable (0.096 Nm backdrive torque) to allow
voluntary human motion. It also includes two magnetic
absolute joint encoders (with embedded Kalman filters) and
current sensors to realize closed-loop torque control at 400
Hz on a GD32F303RE microprocessor (ARM Cortex-M4,
120 MHz, 512 kB ROM, 64 kB RAM). The microprocessor
is equipped with a UART port and a Bluetooth module to
allow for external communication. The exoskeleton weighs
about 3.2 kg including a 3200 mAh onboard Lithium battery.

B. Human Kinematics Measurement

To measure human limb kinematics for control imple-
mentation, we integrated four IMU sensors (NGIMU, x-io
Technologies Limited, Bristol, UK) at subject’s shanks and
thighs (Fig. 2, left) to measure human joint kinematics (will
be specified in Sec. IV-A). The IMUs are embedded with
an AHRS fusion algorithm [28] to smooth out its output,
which is then sent to a Raspberry Pi 4B (8GB LPDDR4-3200



SDRAM, Quad core Cortex-A72 64-bit SoC, 1.8 GHz) via
the UART protocol. Once angular positions are measured,
we take numerical derivatives to obtain the corresponding
angular velocities and accelerations, where a moving average
filter with window size of 71 was applied to attenuate noises
in accelerations.
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Fig. 3: Overall hardware structure of the exoskeleton system.

C. Control Architecture

The overall control hierarchy in Fig. 3 consists of two
loops: a high-level loop that computes u∗ from (12) and
a low-level loop that regulates the desired torques. Due to
limited computation capability of SportsMate 5’s default
microprocessor, we used a Raspberry Pi to receive real-time
IMU feedback, compute command torque in C at about 150
Hz, and transmit it to SportsMate 5’s microprocessor via
serial communication. The exoskeleton’s embedded motor
driver (ER-Driver) will regulate actuator currents to achieve
the desired torque based on a torque constant of 0.083 Nm/A.
Note that we can update control law on the Raspberry Pi at
550 Hz, but we deliberately reduced the calculation speed to
match SportsMate 5’s communication frequency.

IV. EXPERIMENTAL STUDY

In this section, we present implementation of the pro-
posed CM shaping strategy and present experimental results
on five non-disabled human subjects performing various
walking tasks with different combinations of speeds and
inclines/declines.

A. 4-DoF Experimental Biped Model

SportsMate 5 is equipped with two hip actuators in the
sagittal plane to assist hip flexion/extension, which is unlikely
to have direct impacts on human ankle joints. We therefore
adopted a 4-DoF point-feet biped model [29] to derive u∗

for experiments considering the computational capabilities
of the onboard computing units. The configuration vector of
the model is given as qexp = (φ ,θk,θh,θsk)

T ∈ R4 (Fig. 2,
right) and was measured by four IMU sensors attached at the
shank and thigh of both legs. To avoid using additional force
sensors on human feet, we set λ̂ = 0 in (12) thus Bλ = B,
τ̃hum = τhum. Inertial terms of humans are estimated following
the methods in [30].

The 4-DoF experimental model is defined based on an
inertial reference frame (IRF) located at an individual’s stance
foot. To address the IRF changes during stance leg transitions,
we defined two identical 4-DoF models as shown in Fig. 2,
each anchored to one foot. During experiments, the model

associated with the current stance leg will be used to compute
u∗ and then sent to the leg’s actuator. We approximate stance
leg transitions by detecting the hip angular velocity, i.e., its
value reaching zero marks the onset of the double support
phase [31]. Actuator torques were saturated at ±10 Nm to
ensure safety, and we assumed each actuator contributed
equally to the torque command u∗ but in opposite directions
throughout the gait cycle [32].

B. Experimental Protocol
We enrolled 5 non-disabled human subjects (s1: male, 84.2

kg, 1.83 m; s2: male, 60.4 kg, 1.65 m; s2: female, 60.1 kg,
1.70 m; s4: male, 62.6 kg, 1.76 m; s5: female, 63 kg, 1.62
m) for experiments. The experimental protocol was approved
by the Institutional Review Board of Clemson University
(IRB2022-0322), and subject consent was obtained prior to
the start of all experiments. All experiments were conducted
on an instrumented treadmill (Bertec Corporation, OH, US).

Before we started extensive data collection, we performed
preliminary testing on s1 to assess the effects of shaping
different components of CM (linear components along x
and y axes, and angular component around the z axis)
and the associated shaping parameters. To ensure safety,
only level-ground walking was performed, and the speed
was set to 0.8 m/s. We selected four values for ki as
{0.85, 0.95, 1.1, 1.2}. The selected parameters were then
used in the subsequent experiments for data collection on s2
to s5 while ensuring their comfort.

The main experiments for s2 to s5 were divided into 8
groups, and each group contained three control modes, i.e.,
passive (P, ki = 1, zero actuator torques), resistive (R, ki > 1),
and assistive (A, ki < 1), respectively. The speeds and incline
conditions for each group are summarized in Table I, where
“LG”, “RA”, and “RD” denote level ground walking, ramp
ascent (5◦), and ramp descent (5◦). For each condition and
control mode, data from 20 steady-state steps were recorded
within the first minute since the beginning of each trial. In
all experiments, we set Kp = 10 and L = 100 · I4×4 for the
NDO, chosen via trial-and-error to balance convergence speed
and reasonable actuator torques that are within limits. For
assistive/resistive trails, subjects were not informed with the
underlying control mode. Instead, we asked them to provide
feedback on their perceived control modes afterward. All
recorded data was cropped into gait cycles by heel strikes
detected by the treadmill’s embedded force plates.

We also recorded muscle activations of Rectus Femoris
(RF), Biceps Femoris (BF), and Gluteus Medius (GM) via
EMG sensors (Trigno Avanti Sensor, Delsys Inc., MA, USA),
where RF functions as a hip flexor, and BF, GM as hip
extensors [33]. The EMG data were first filtered by a fourth-
order bandpass filter (20-500 Hz), rectified, then by a 6
Hz low-pass filter and rectified [34]. The EMG data were
then normalized with respect to the maximum peak of the
ensemble averages (across repetitions) of three control modes
within each group. This converted the EMG signals to a
percentage of the peak filtered EMG value during the trials.
After normalizing the EMG to peak EMG (%), we calculated



the integral with respect to gait cycle to represent muscular
effort.

TABLE I: Experiment Scenarios per Subject
Group 1 2 3 4 5 6 7 8

Speed (m/s) 0.8 1 1.2 0.8 1 1.2 0.8 1
Condition LG LG LG RA RA RA RD RD

C. Results on s1 & Parameter Selection

For preliminary testing on s1, we recorded exoskeleton
torques, CM, and muscle activities of RF, BF, GM during 20
steady steps, where the results are shown in Figs. 4 to 7. In all
figures throughout the paper, 0% of the gait cycle corresponds
to heel strike of the stance leg, and positive/negative torque
directions indicate hip flexion/extension, respectively.

The control torques that shape the linear components along
x and y axes and the angular momentum around the z axis
with ki = 0.85 are shown in Fig. 4. All control torques
exhibit similar amplitudes and shapes, except for the one
shaping linear momentum along the y-axis that has more
sudden changes and vibrations. This may be due to the
small y-axis CoM displacement compared to the x-axis [35],
making control torque more sensitive to measurement noise.
In addition, Fig. 5 shows that a smaller value of ki (further
away from 1) results in greater value of torques. Fig. 6
further demonstrates s1’s linear CM along the y-axis, with
the exoskeleton shaping the linear components along x and y
axes and the angular momentum around the z axis. Overall,
all three shaping strategies preserve the shape of s1’s linear
CM but alter its magnitude, indicating that the proposed
shaping strategy is able to allow for voluntary motion.

Fig. 7 compares the EMG result of left BF under three
different assistive shaping strategies (top) and left GM with
varying parameters for shaping the linear component in the
x direction (bottom). We can see that shaping the linear
component of CM along x-axis brings relative lower muscle
activation in assistive mode compared to shaping the other two
components. Moreover, when shaping the linear component
along x-axis, compared to passive walking, the assistive mode
resulted in lower muscle efforts, whereas the resistive mode
resulted in higher muscle activity, which matches the design
expectation. Based on the preliminary test results on s1, we
chose to shape the linear component along x-axis (which
aligns with the primary direction of human locomotion) and
ki to be 0.85 (A) and 1.2 (R) for experiments.

D. Results on s2 to s5

The experimental results s2 to s5 are shown in Figs. 8 to
12. We present results for selected subjects and tasks due
to their overall similarity, and encode results in the paper
following the format: (Result Type; Group Number
(G); Subject Code (s); Specifics). All assis-
tive/resistive trials were successfully recognized by the
subjects via a survey after data collection, except for 2 trials
(out of 96 trials). The estimated hip torques using NDO
(Fig. 8) demonstrate consistent shapes in all control modes
for s4, which closely match the ones from Winter’s dataset
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Fig. 4: Control torques with shaping the linear component
along x-axis (top), linear component along the y-axis (middle),
and z-axis angular component (bottom), all with ki = 0.85.
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Fig. 5: Mean ± 0.5·SD of control torques that shape s1’s
linear CM (x-axis) with ki = 0.85 and 0.95.

[31] in magnitude and shape, supporting the feasibility of
the proposed NDO. Minor discrepancies, including a phase
lead and shape variations, stem from the simplified 4-DoF
experimental model for experiments, which does not fully
capture human motion. Additionally, the model combines both
hip joints into one, therefore the estimated torques represent
their combined effect. Despite these limitations, we will still
see benefits of the proposed shaping strategy on muscular
efforts later.

The command and tracking torques are shown in Fig. 9. We
can see that the actuator system was able to accurately track
the generated torque commands. In Fig. 11, CM’s magnitude,
particularly the angular component, is lower in the resistive
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mode compared to the assistive mode. Because resistive
strategies aim to mimic a heavier person, with human joint
inputs from the same subject and the constant treadmill speeds
within each mode, the resulting CM is greater accompanied
by increased muscular efforts.

EMG results of representative subjects are shown in Fig. 10,
as other exhibit similar patterns. Resistive mode in general
resulted in higher EMG values thus increased muscle efforts,
in terms of either maximum peak, e.g., (G3; s2; RFL), or
prolonged muscular utilization such as (G3; s2; GML). On
the contrary, assistive mode reduced muscle activities, e.g.,
(G3; s2; GML) and (G4; s4; RFL), which aligns with the
subjects’ qualitative feedback that assistive mode results in
less effort, especially in the tasks that typically demand more
muscle effort such as RA (G4 in Fig. 10).

Some assistive trials show close EMG activity in certain
muscles compared to passive mode, likely due to two
reasons. The subjects in this study had no prior experiences
with the exoskeleton, therefore muscular efforts could be
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Fig. 8: Mean ± 0.5·SD of the estimated hip torques; G3; s4.
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further reduced with improved co-adaptation over time. The
control parameters were fixed across subjects, which may not
perfectly align with all subject’s preferences. For example,
(G2; s5; RFL) shows a delayed onset compared to other
subjects, closely coinciding with the torque transition from
flexion to extension that could lead to higher EMG peaks.
During the first half of a gait cycle, the assistive mode
provides flexion torques and this coincides with the onset
of RF in Fig. 10 that functions as a hip flexor. Similarly,
the extension torque during the second half of the gait cycle
coincides with the onset of BF in Fig. 10.

Another interesting observation is that in RD trials, both
assistive and resistive modes result in lower muscular efforts,
e.g., (G8; s4; RFR) compared to passive mode. According to
subject feedback, these two modes reduced muscle activities
differently. In assistive mode, similar to LG and RA trials, the
proposed shaping method provided control aligned with the
subjects’ self-selected motion, which led to reduced muscle
activities. In resistive trials, subjects reported that resistive
torques helped regulate their pace, preventing excessive speed
or step length, making them feel more “secure” and potentially
lowering muscular efforts.

Finally, Fig. 12 presents the ratio of the integrated EMG
over a gait cycle (IEMG) between assistive and passive
mode, or resistive and passive mode. A ratio greater than one
indicates greater muscular effort than passive gait. Compared
to the passive mode, each subject’s GM has consistently
lower/higher IEMG ratios during most of the assistive/resistive
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left: y-axis (linear), right: z-axis (angular).

modes, respectively. It is evident that almost all muscles have
increased effort in all resistive trials. This aligns with the
subjects’ feedback that during their perceived resistive modes,
they felt harder to walk, especially during RA (G4 to G6).

V. CONCLUSIONS

In this paper, we proposed a task-invariant CM shaping
paradigm that assists/resists human locomotion by altering
the human’s CM. By defining a virtual reference model based
on the human user’s self-selected gaits and scaled inertial
parameters, the proposed shaping strategy tracks the reference
CM to dynamically mimic the gaits of a lighter/heavier person.
Experimental results on five non-disabled subjects performing
different walking tasks demonstrated reduction/increments in
muscle activations with assistance/resistance, respectively, all
with the same set of control gains. Nearly all subjects were
able to recognize the underlying strategy without knowing the
control modes. These results support extending this control
paradigm to individuals with limited voluntary control of
safe, efficient lower-limb motions. Future work includes
investigating the effects of different CM shaping parameters

(Kp, ki) and incorporating learning techniques to customize
exoskeleton assistance for different users.
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