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Abstract— Existing control paradigms for lower-limb exoskele-
tons aim at replicating task-specific, subject-dependent reference
kinematics, which overly constrain voluntary human motion.
Individuals with voluntary control over their lower-extremities
would likely benefit from the ability to choose their gait patterns
freely while being assisted by exoskeletons during different
activities. In this paper, we propose a novel control paradigm and
its implementation to alter a human’s Centroidal Momentum,
i.e., a sum of projected limb momenta onto the human’s center
of mass, through tracking a dynamic reference Centroidal
Momentum to provide consistent assistance across tasks. This
reference Centroidal Momentum is defined based on the human’s
self-selected gaits with scaled anatomical parameters, rather than
reference kinematics of specific locomotor tasks. The resulting
control strategy does not prescribe any reference trajectories,
providing flexibility for human users. We demonstrate simulation
results on a human-like biped and experimental results on
four human subjects wearing a bilateral hip exoskeleton
performing various walking tasks under different speed and
incline/decline conditions. These results show that the generated
assistance/resistance can reduce/increase the subjects’ muscle
efforts, respectively, across the performed tasks.

[. INTRODUCTION

Emerging powered lower-limb exoskeletons have demon-
strated great potential in assisting their human users for
various activities [1]. Depending on the intended control
and design goals, they can help bear the weight of extra
loads [2], reduce energy expenditure [3] during walking, and
restore normative gait kinematics [4]. The vast majority of
existing control paradigms are trajectory-based that replicate
reference kinematics for human user’s joints [5], which are
appropriate for individuals that with neurological injuries that
prevent voluntarily generation of lower extremity motions
[5]. For individuals with partial or full voluntary control
over their lower extremities (e.g., able-bodied persons),
control paradigms would ideally enable exoskeletons to
provide assistance without confining their preferred gaits
for facilitating the adaptability to various walking patterns
[1].

Trajectory-free control approaches do not confine user’s
joint kinematics to specific gait patterns, and therefore are
promising to promote flexibility for humans in choosing
their self-preferred gaits [1]. For instance, human muscle
activations can be measured via Electromyography (EMG)
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sensors and used as feedback for exoskeleton control design
to assist human locomotion [6], [7]. However, performance
of EMG sensors is susceptible and sensitive to measurement
noises, placement of electrodes, and sweating [8]. Energy
shaping and passivity-based control methods [9]-[11] enable
exoskeletons to provide task-invariant assistance through dy-
namically altering human body energetics. While independent
of reference trajectories, solving achievable dynamics for
high-dimensional, underactuated systems requires solution to
the matching condition [10], which can be very challenging
to obtain, especially with varying degrees of underactua-
tion during human locomotion. Although other trajectory-
independent control paradigms exist, they are specifically
proposed for dedicated tasks such as sit-to-stand [12], stair
ascent [13], or walking tasks [3]. It remains unclear if these
control paradigms can still demonstrate the same efficacy
when translating into continuously varying daily activities.

As a commonly used physical metric in locomotion [14],
Centroidal Momentum (CM), the sum of projected segmental
momenta onto a robot’s Center of Mass (CoM) [15], has
been applied in the development of control strategies for both
bipeds and quadrupeds [14], [16]. CM has also been used
as an index to evaluate the stability of human gaits [17],
performance of balance recovery strategies [18], and models
that predict human CoM trajectory during sit-to-stand motion
[19]. CM is consistently represented as a six-dimensional
vector in 3D space [15] regardless of biped models or walking
gaits [15], which can be advantageous in designing control
strategies to modify it. As long as the number of exoskeleton
actuators exceeds six, we can guarantee the existence of a
control law to alter a human’s CM, even for underactuated
systems. Control allocation (i.e., achieving a desired CM
with specific actuators) can also be realized, which is usually
feasible when the system is overactuated [20]. Finally, altering
a human’s CM via exoskeleton actuators does not prescribe
joint-level kinematics nor specific limb momentum, which
has the potential to generate task-invariant assistance and
promote voluntary human motion.

In this paper, we propose a control paradigm called CM
shaping to alter a human’s CM for providing task-invariant
assistance, as well as its implementation on a powered
bilateral hip exoskeleton. The control law is yielded through
tracking the desired CM of a virtual reference model, whose
joint kinematics are based on the human user’s self-selected
gaits and scaled version of limb inertial parameters. Through
tracking this reference CM via exoskeleton actuators, we can
mimic behaviors of the virtual reference model with altered
inertial parameters (greater or less) of a human user (Fig. 1).



We implemented the proposed control strategy on a powered
bilateral hip exoskeleton with highly backdrivable actuators,
and integrated inertial measurement units (IMUs) into the
overall control system for measuring human limb kinematics.
A nonlinear disturbance observer (NDO) was proposed to
estimate human joint torques for control derivation. Experi-
mental results on four able-bodied participants wearing the
hip exoskeleton during walking tasks at varying speeds and
slopes demonstrate that the generated assistance/resistance
can reduce/increase muscular efforts.

Fig. 1: Concept of CM shaping: through shaping CM of a
human via exoskeleton torque u, we can mimic the CM of a
lighter person (right) for gait benefits.

II. DYNAMICS & CONTROL METHOD

A. Biped Dynamics

We model a human wearing a lower-limb exoskeleton as
a whole biped that ambulates in the sagittal plane, given that
the predominant motions during human walking occur in the
sagittal plane [21]. Assuming the human-exoskeleton system
is a rigid body, its Euler-Lagrange dynamics can be expressed
as [22]

Mi+Cg+N+ATAL =1, )

where n denotes the number of degrees of freedom (DoFs),
g € R" is the configuration vector that will be specified
for simulation and experimental models in Sec. IV, M €
R™ ™ is the positive-definite inertia matrix, C € R™" is
the Coriolis/centrifugal matrix, and N € R" indicates the
gravitational force vector. All inertial parameters in these
matrices are the sum of the human and exoskeleton inertial
parameters. The constraint matrix A, defined as the gradient
of holonomic constraint functions, maps the ground reaction
force vector A = A + A7 into the overall dynamics, where
A=W(AG—AM~'N), W = (AM~'AT)"! and A = WAM ™!
[22]. The overall torque T sums up two parts: the human
joint torque vector Th,y and the exoskeleton input Tex, = Bu,
where B = (Opxn_p, Ipxp)! € R™P is the mapping matrix for
the exoskeleton torque u € RP,

B. Centroidal Momentum Shaping

The CM of a human, hg € R®*!, is defined as the sum of
projected limb momenta onto the individual’s CoM. Defining
Ag € RO*™ as the CM matrix, hg can be expressed as

h¢ = Agq. @
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Fig. 2: CM shaping control diagram (reproduced from [23]).

We then propose the following relationship between reference
CM HE', hg, and their derivatives as:

WS — hg + Ky (WS — hg) =0, 3)

where K, € R%*6 is a positive-definite diagonal matrix. We
propose this definition to track the change rate of hrce;f
meanwhile minimizing the difference between hg and AL,
which is generated only after a human starts walking. Similar
to following a target vehicle with varying speeds, we hope
to achieve the same velocity for the follower vehicle rather
than a desired position over time. Re-writing hrgf following
the convention in (2) and taking its time derivative yields

href — Ag:fq-7 href — Aréfq _|_Ar5fq, (4)
where ¢ can be obtained from a virtual reference model
Mrefq+crefq+Nref+AT)Lref = Thum. (5)

The matrices M™f, C™f, N*f and A™f in (5) are defined
similarly to the ones in (1) but with each link’s inertial
parameters m; and I; scaled k; € R times, i.e., meref = k;m;
and Iiref = k;I;. Intuitively, k; > 1 (< 1) renders resistive
(assistive) strategies, as reference CM will be defined with
larger (smaller) inertial parameters to reflect a heavier (lighter)

person. Equating /g in (3) with Agg+Ag¢, we obtain
—AgG+Y =0, (6)

where Y = —Agq+h&" + K, (A% ¢ — Agg). With the assump-
tion that the human ambulates in the sagittal plane, the CM’s
linear components along z-axis and angular momenta around
x- and y-axes are zeros. Therefore, A; contains only three non-
zero rows, which further simplifies (6) into three equivalent
equations. If an exoskeleton has more than three actuators,
then there exists infinite solutions to the control law u. We
apply an optimization procedure to determine u as

min u' Wu
u

st —AgG+Y =0,

Umin < ||MH2 < Umax,

where W € RP*P is a diagonal, positive-definite weight
matrix, Umin, Umax € R are the lower and upper bounds of
control torques, respectively. The objective function is chosen
as u’ Wu to minimize torques exerted by the exoskeleton
actuators for energy efficient solutions. Additionally, the
weight matrix W can be adjusted to achieve control allocation
depending on specific assistive or resistive goals. The above
optimization problem can be solved by using the Lagrange
multiplier method [24]. Defining the Lagrange multiplier to



be n € R™, where m is the number of non-zero elements
to be shaped in CM, and a Lagrangian £(u,n) = u! Wu +
N’ -left-hand side of (6), we compute d.L/du =0 and plug
it into d£/dn = 0 to obtain the CM shaping strategy as

1 .
ut =— EW”B{IZTD*1 [Z(CGg+N+ATA — %) +7], (1)

where By = B — ATA, %um = (I — AT\, D =
ZByW'BIZ", and Z=AcM™".

C. Nonlinear Disturbance Observer

The proposed CM shaping strategy (7) requires knowledge
of Thum, Which can be difficult to measure in practice. We
modify an existing model-based NDO [25] to estimate human
joint torques using only angular information. The required
sensors for measurements will be discussed in Sec. III-B.
Defining z = M~ %, as the term that needs to be estimated
and left-multiplying M~" at both sides of (1), we have

2=G+M'CGg+M'N+MATA—M'Bju.  (8)
Denoting Z as the estimate for z and e = z—Z as the estimation

error, we have [26]:
t=Le=L(z—%), )

where L € R™" can be chosen as a positive-definite, diagonal
matrix to guarantee uniformly ultimate boundness and fast
convergence of e [26] governed by

é=:—z2=z—Le. (10)
III. BILATERAL HIP EXOSKELETON SYSTEM

To demonstrate efficacy of the proposed method, we
implemented the CM shaping strategy (7) on a bilateral,
powered hip exoskeleton with highly backdrivable (i.e., low
mechanical impedance) actuators and externally integrated
sensors (Fig. 3, left). In this section, we introduce the structure
of the exoskeleton control system.

SportsMate 5

Raspberry Pi

Hip actuators

IMUs

mounted IMUs (left) and configuration variables for the 4-
DoF experimental model (right).

A. SportsMate 5 Exoskeleton

SportsMate 5 (Enhanced Power Technology Co., Ltd.,
Shenzhen, China) has two brushless direct current motors
that can produce 7.5 Nm continuous torque (22.5 Nm peak
torque) after a 25:1 transmission ratio. The actuators are
highly backdrivable (0.096 Nm backdrive torque) to allow
voluntary human motion. It also includes two magnetic
absolute joint encoders (with embedded Kalman filters) and

current sensors to realize closed-loop torque control at 400
Hz on a GD32F303RE microprocessor (ARM Cortex-M4,
120 MHz, 512 kB ROM, 64 kB RAM). The microprocessor
is equipped with a UART port and a Bluetooth module to
allow for external communication. The exoskeleton weighs
about 3.2 kg including a 3200 mAh onboard Lithium battery.

B. Human Kinematics Measurement

To measure human limb kinematics for control calculation,
we integrated IMU sensors (NGIMU, x-io Technologies
Limited, Bristol, UK) at shanks and thighs (Fig. 3, left) to
measure the configuration vector of the human experimental
model (will be specified in Sec. IV-B). The IMUs are
embedded with an AHRS fusion algorithm [27] to smooth
out its output, which is then fitted to a Raspberry Pi 4B (8GB
LPDDR4-3200 SDRAM, Quad core Cortex-A72 64-bit SoC,
1.8 GHz) through the UART protocol. Once angular positions
are measured, we take numerical derivatives to obtain the
corresponding angular velocities and accelerations, where a
moving average filter with window size of 71 was applied to
attenuate noises in accelerations.
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Fig. 4: Overall hardware structure of the exoskeleton system.

C. Control Architecture

The overall control hierarchy in Fig. 4 consists of two
layers: a high-level layer that computes ™ in (7) and a low-
level layer that achieves the desired torques. Due to limited
computation capability of SportsMate 5’s microprocessor,
we used the Raspberry Pi to communicate with IMUs and
compute the torque command in C at about 150 Hz in real
time and sent it to SportsMate 5’s microprocessor through
serial communication. SportsMate 5’s embedded motor driver
(ER-Driver) will regulate actuator currents to achieve the
desired torque through a torque controller with the torque
constant of 0.083 Nm/A. Note that the proposed control can
be updated on the Raspberry Pi at 550 Hz, but we deliberately
reduced the calculation speed to match SportsMate 5’s
communication frequency.

IV. SIMULATIONS & EXPERIMENTS

In this section, we present simulation results of CM shaping
on an 8-DoF dynamic biped and experimental results on four
able-bodied human subjects wearing SportsMate 5 during
various treadmill walking tasks.

A. Simulation Study

The 8-DoF dynamic biped (Fig. 1, [11]) used in simulation
study can walk down a shallow slope with carefully-selected
parameters. The biped’s configuration vector is given as
Gsim = {X,Y,0, 04, 6k, 6h, Ok, 6, } € R, where (x,y) is the
position for the inertial reference frame, 6;, i € {a,k,h,sk,sa}
indicates the relative angle of stance ankle, stance knee,



hip, swing knee, and swing ankle joints, respectively. Each
of these joints is actuated by an exoskeleton actuator, i.e.,
U = {1y, Uy, Un, Usk, s, + € R and a human joint torque v;, i €
{a,k,h,sk,sa}. The overall human torque vector v € R’ takes
the form v = —Kj (Gsim — Gsim) — K} Gsim- Positive-definite
matrices K and K}y include proportional and derivative gains,
and gsip, 1S the equilibrium vector of human joints. We first
tuned the gains in K}, K and ggim by trial and error to find a
stable passive gait and then implemented u* for simulations.
All simulation parameters can be found in Table II of [11].
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Fig. 5: Simulated linear CM along x-axis (left) and control
torque during one steady step (right) with k; = 0.92, 0.95,
1.03, and K, = 10 - Isxe.

The linear component of CM along the walking direction
with k; = 0.92 (assistive) and 1.03 (resistive) across 8 steps
is demonstrated in Fig. 5. We can see that all CM curves
preserve similar shapes but with different magnitudes, and the
steady errors between the CM of (5) and (1) are caused by the
parameter differences between Ag and Agf at the beginning of
the first step. This difference can lead to continuous tracking
action from the exoskeleton, where control torque with k; =
0.92, 0.95, and 1.03 during one-steady step is shown on the
right of Fig. 5. We will compare the simulated control torque
with experimental torque results in Sec. IV-D.

B. 4-DoF Experimental Biped Model

SportsMate 5 is equipped with two hip actuators to assist
hip flexion/extension during locomotion, which is unlikely
to have significant impacts on ankle joints. We therefore
adopted a 4-DoF point-feet biped model [28] to derive
u* for experiments considering computational complexity.
The configuration vector of this model is given as gexp =
(0,6, 6h,04)" € R* (Fig. 3, right) and was measured by
four IMU sensors attached at the shank and thigh of both
legs. To avoid using additional force sensors on human feet,
we set A =0 in (7) thus By = B, Thum = Thum. Inertial terms
of humans are estimated following the methods in [29].

The experimental model is defined based on an inertial
reference frame (IRF) located at the stance foot. To handle
IRF change during stance leg switches, we defined two 4-
DoF point-feet biped models: one based at the left foot
and the other one at the right. During each leg’s stance
phase, we applied the corresponding model for that side to
compute u*. The stance leg switches are detected when the
hip angular velocity reaches zero, i.e., the onset of the double
support phase [30]. In this paper, we chose to shape the linear
component of CM along y-axis, as this choice generated the
best simulation performance among all non-zero components.

We saturated the actuator torques at £10 Nm to ensure safety,
and we assumed each actuator contributed equally to the
torque command u* but in opposite directions throughout the
gait cycle as left and right hip torques are roughly symmetric
[30], [31].

C. Experimental Protocol

We enrolled 4 able-bodied human subjects (sl: male,
60.4 kg, 1.65 m; s2: female, 60.1 kg, 1.7 m; s3: male,
62.6 kg, 1.76 m; s4: female, 63 kg, 1.62 m) for the
experiments. The experimental protocol was approved by the
Institutional Review Board of Clemson University (IRB2022-
0322), and subject consent was obtained prior to the start
of all experiments. All subjects walked on an instrumented
treadmill (Bertec Corporation, OH, US) with various speeds
and inclines/declines while wearing SportsMate 5.

The experiments for each participant were divided into 8
groups, where each group contained three control modes, i.e.,
passive (“P”, k; = 1, zero actuator torques), resistive (“R”,
ki = 1.2), and assistive (“A”, k; = 0.85), respectively. The
speeds and incline conditions for each group are summarized
in Table. I, where LG, RA, and RD denote level ground
walking, 5° ramp ascent and —5° ramp descent, respectively.
For the rest of the paper, we will represent the groups and
modes using their acronyms and indices, e.g., Al indicates
the assistive mode in Group 1. Throughout all experiments,
we selected K, =10 and L = 100 - I4»4 for the NDO. The
ramp descent scenarios were conducted only with 0.8 m/s
and 1 m/s, as the maximum treadmill speed for declined
walking is 1 m/s.

During experiments, we first allowed the subject’s gaits to
converge before data collection. For assistive/resistive trails,
subjects were not informed with the underlying control mode.
Instead, we asked them to provide feedback on their perceived
control modes afterward. All recorded data was cropped into
gait cycles by heel strikes detected by two instrumented force
plates embedded with the treadmill. We also recorded muscle
activations of Rectus Femoris (RF), Biceps Femoris (BF),
and Gluteus Maximus (GM) via EMG sensors (Trigno Avanti
Sensor, Delsys Inc.), where RF functions as a hip flexor, and
BEF, GM as hip extensors [32]. The EMG data were first
filtered by a fourth-order bandpass filter (20-500 Hz) and
rectified, then by a 6 Hz low-pass filter and rectified [33].
The EMG data were then normalized with respect to the
maximum peak of the ensemble averages (across repetitions)
of three trials within each group. This converted the EMG
signals to a percentage of the peak filtered EMG value during
the walking trials. After normalizing the EMG to peak EMG
(%), we calculated the integral with respect to gait cycle to
represent muscular effort.

TABLE I: Experiment Scenarios per Participant

Group 1 2 3 4 5 6 7
Speed (m/s) | 0.8 1 1.2 | 0.8 1 1.2 | 0.8 1
Condition LG | LG | LG | RA | RA | RA | RD | RD

D. Results & Discussions
For each control mode, we recorded data of 20 steady
steps (10 strides) and calculated mean and standard deviation



(SD) of torques, CM, and EMG, where experimental results
are shown in Figs. 6 - 10. In all figures, 0% of the gait
cycle corresponds to heel strike of the stance leg, and posi-
tive/negative torque directions indicate hip flexion/extension,
respectively. During experiments, all assistive/resistive trials
were successfully recognized by the participants except for 2
trials, and they reported felt less/more required effort when
walking with the perceived assistance/resistance, respectively.

The estimated hip torques using NDO (Fig. 6) demonstrate
consistent shapes in all control modes. Note that the estimated
torques have similar magnitudes but different shapes than
those in Winter’s data set [30]. This is mainly because the
NDO was based on the simplified 4-DoF experimental model
from Sec. IV-B that does not fully reflect real human motions.
The model also combined two hip joints into one, therefore
the estimated torques are the combined torques of both hip
joints. Nevertheless, we will see benefits such as reduced
muscle activations of the generated assistance/resistance based

on the estimated hip torque.
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The command and tracking torques are shown in Fig. 7.
In order to demonstrate the actuators’ torque tracking perfor-
mance, we calculated the command torque offline when the
participant walked with the exoskeleton, and then executed
the recorded torque command in real-time and recorded

Gait Cycle (%)

the actual generated torque from the actuators. We can see
that the actuators can correctly execute command torques.
Comparing Fig. 7 with Fig. 5, we can see that experimental
torques are very similar to the simulated ones in terms of
the torque direction during most part of the gait cycle. In
Fig. 8, CM’s magnitude, particularly the angular component,
is lower in the resistive mode compared to the assistive mode,
as the exoskeleton is designed to mimic the behavior of a
heavier person. With human inputs from the same participant,
this should result in reduced leg segment velocities and
consequently a lower CM.

EMG results of sample participants are demonstrated in
Fig. 9. Resistive mode in general resulted in higher EMG
values thus increased muscle efforts, in terms of either
maximum peak (e.g., left RF of s1 in Group 3), or prolonged
muscular utilization (e.g., left GM of sl in Group 3). On
the contrary, assistive mode reduced muscle activities, e.g.,
right BF of sl in Group 3 and left GM of s2 in Group 4,
which coincides with the subjects’ qualitative feedback that
assistive mode results in less effort especially in the tasks
that typically demand more muscle effort than usual, such as
ramp ascending (Group 4 in Fig. 9).

Some assistive trials show higher EMG activity in certain
muscles compared to passive mode, likely due to two reasons.
The participants in this study had no prior experiences with
the exoskeleton, their performance could possibly improve
over time. The control parameters were consistent across
subjects, which may not perfectly align with all subject’s
preferences. For example, s4’s left RF in Group 2 shows a
delayed onset compared to other subjects, closely coinciding
with the torque transition from flexion to extension that could
lead to higher EMG peaks. The control torques in Fig. 7
agree with the above observations. During the first half of
a gait cycle, the assistive mode provides flexion torque and
this coincides with the onset of RF in Fig. 9 that functions
as a hip flexor. Similarly, the extension torque during the
second half of the gait cycle coincides with the onset of BF
in Fig. 9.

Finally, Fig. 10 shows the integrated EMG (IEMG) ratios
between the assistive/resistive modes and the passive mode.
Compared to the passive mode, each subject’s GM has
consistently lower/higher IEMG ratios during most of the
assistive/resistive modes. It is evident that almost all muscles
have increased effort in all resistive trials. This aligns with the
subjects’ feedback that during their perceived resistive modes,
they felt harder to walk, especially during ramp ascending
tasks. In some cases, such as right BF of sl in A3 (see Fig.
9), the assistive mode results in lower peaks, which could be
beneficial, but slightly larger EMG during some parts of the
gait cycle result in larger accumulated value.

V. CONCLUSIONS

In this paper, we proposed a task-invariant CM shaping
paradigm that assists/resists human locomotion by altering
the human’s CM. By defining a virtual reference model based
on the human user’s self-selected gaits and scaled inertial
parameters, the proposed shaping strategy tracks the reference
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CM to dynamically mimic the gaits of a lighter/heavier
person. Simulation studies on an 8-DoF dynamic biped
demonstrated that our proposed method successfully altered
the biped’s CM with reasonable torques. Experimental results
on four able-bodied subjects performing different walking
tasks demonstrated reduction/increments in muscle activations
with assistance/resistance. These results provide a promising
foundation for extending this control paradigm to individuals

with a reduced ability to voluntarily produce efficient, safe
lower extremity motions while walking. The type of assistance
delivered here has the potential to allow such individuals to
achieve a wider range of gait patterns, with the potential long-
term effect on improving functional mobility. Future work
includes investigating shaping other CM components and
incorporating learning techniques to dynamically customize
shaping parameters (K, k;) based on user preferences.
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