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ABSTRACT Kinematic control approaches for exoskeletons replicate normative joint kinematics associated
with one specific task and user at a time, which makes it difficult to adjust to continuously-varying
activities during gait training. These approaches also overly constrain individuals who have partial or
full volitional control of their limbs, preventing these individuals from choosing their own preferred gait
patterns. To address these issues, we proposed a matching framework for underactuated total energy shaping
(i.e., shaping both the potential and kinetic energies) with human and environmental interaction to provide
task-invariant, energetic assistance. In our prior work, we designed assistive strategies to compensate for
lower-limb inertia in the actuated part of the mass matrix while leaving mass related terms unshaped.
While these strategies have demonstrated potential gait benefits, shaping mass related terms in addition
to lower-limb inertia can produce greater benefits as they are more dominant in determining human
dynamics during locomotion. Moreover, previous definitions of closed-loop mass matrix with reduced
inertial parameters cannot guarantee its positive definiteness. Having a non-positive definite mass matrix
in the closed loop can render chaotic behaviors such as unbounded exoskeleton torques that cause danger to
human users. In this paper, we generalize our prior work to shape all inertial terms in the actuated part of the
mass matrix while ensuring its positive definiteness in the closed loop. In addition, given a positive-definite,
closed-loop mass matrix, we prove passivity from human input to joint velocity and highlight two Lyapunov
stability results based on common assumptions of human joint control policies. We then show benefits of the
proposed approach and its advantages over conventional exoskeleton control methods with simulations on a
human-like model. We also show that the corresponding assistive torques closely match the human torques
of an able-bodied subject.

INDEX TERMS Total energy shaping, exoskeletons, rehabilitation robotics, biped locomotion.

I. INTRODUCTION
Powered lower-limb exoskeletons are external mechani-
cal structures equipped with actuators that support and
assist human users during locomotion. To assist individu-
als with neurological conditions, such as stroke or spinal
cord injury, these exoskeletons are often controlled to track
pre-defined kinematic patterns. For instance, the powered
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hip-knee exoskeletons ReWalk [1], Ekso Bionics [2], and
ATLAS [3] enforce pre-determined joint kinematics through
a finite-state-machine structure. The control strategies of
other exoskeletons, such as the Hybrid Assistive Limb [4]
and the Indego exoskeleton [5], also fall into the category of
trajectory tracking. Despite the fact that these exoskeletons
have shown promising results in gait rehabilitation, critical
barriers still exist in the control technology, which limits
their overall adaptability. These kinematic control methods
replicate the normative joint kinematics associated with one
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specific task and user at a time [6], which prohibits them from
adjusting to continuously varying locomotor tasks or changes
in user behavior during gait rehabilitation. Being confined to
fixed gait patterns gives the user less freedom because little
or no contribution from the human user is allowed. While this
may be viable for individuals who cannot volitionally control
their lower-limbs, individuals with at least some volitional
control ability should be allowed to make mistakes or cor-
rections during gait training to facilitate active user learning.
Moreover, switching between different reference trajectories
requires accurate task recognition, which is currently difficult
to achieve in practice [6]. The associated parameter tuning
for multiple controllers requires even more time for different
individuals [7]. A paradigm shift from task-specific, kine-
matic control approaches to task-invariant, energetic control
approaches is needed for exoskeleton control design.

Various assistive controllers have been proposed for
exoskeletons to amplify and augment human motion [8]–[10]
or compensate for exoskeleton mass/inertia [11], [12]. In par-
ticular, energy-related methods have been adopted to facili-
tate both the control and mechanical design for exoskeletons.
For instance, [13] proposes a potential energy modulation
paradigm for upper-limb exoskeletons to eliminate user oscil-
lation while accomplishing certain pre-defined tasks. In [14],
the authors proposed the design of an elastic device to offload
muscle forces by storing and releasing mechanical energy
during stance phase. Similarly, the passive hip exoskeleton
presented in [15] reduces the user’s metabolic cost during
running by using torsional springs to aid hip extension.While
these devices are promising, they can only store and release
mechanical energy injected by human users due to their pas-
sive nature in design. In other words, they are not capable
of generating additional energy to assist human locomotion,
which is often required and emphasized in gait rehabilitation.
An energetic control method is in demand to actively alter the
user’s energy via powered exoskeletons for allowing greater
freedom and flexibility during gait training.

Energy shaping is a control method that controls the
system’s energy to a specific analytical function of the sys-
tem state in order to induce different dynamics via the
Euler-Lagrange equations [16]. Energy shaping has been
applied to bipedal locomotion to create natural, efficient gaits
based on passive dynamics [17], regulate a biped’s walking
speed [18], and facilitate 3D walking gaits via control reduc-
tion [19]. However, prior work has been limited to simple
point-foot bipedmodels that ignore the changing contact con-
ditions in human walking. These changing contact conditions
result in different degrees of underactuation, which present
significant challenges in systematically solving the matching
conditions. The matching conditions are sets of nonlinear
partial differential equations governing the achievable forms
of a system’s closed-loop energy. While these equations can
be trivially solved with the case of full actuation, i.e., the
number of actuators is equal to the number of degrees of free-
dom (DOFs), the solutions can be quite challenging to obtain
for underactuated systems, i.e., the number of actuators is

less than the number of DOFs. Different approaches have
been proposed to simplify the solving ofmatching conditions.
However, they either rely on assumptions, e.g., the shape
variables being cyclic in the mass matrix [20], the inertia
matrix and potential energy only depend on the actuated
coordinates [21], or they have only been applied to sim-
ple models such as the pendulum-cart system [22] and the
Acrobot system [23]. These limitations prevent the exist-
ing simplification methods from being applied to complex
human-exoskeleton dynamics, which often include many
DOFs and the associated mass matrix is dependent on shape
variables in general. Amatching paradigm for energy shaping
that incorporates human-environmental interaction and eases
the solving of matching conditions is needed to determine the
shapeable dynamics of complex human-exoskeleton systems.

In our prior work [24], we focused on an energetic con-
trol approach that shapes the potential energy of the human
body and exoskeleton in closed loop. By shaping poten-
tial energy, torques can be generated to counteract gravity.
This control action yields the so-called body-weight support
(BWS), which offloads the perceived weight of the user’s
lower extremities and center of mass. However, shaping the
potential energy cannot provide the subject with direct assis-
tance in the direction of ambulation.We therefore generalized
the potential energy matching framework to the case of total
energy shaping, i.e., shaping both the kinetic and potential
energies of the human-exoskeleton system [25]. In particular,
we chose to compensate for lower-limb inertia in the actuated
part of the mass matrix. While simulation results with these
strategies have indicated possible clinical benefits, the mass
terms inside the shapeable part of the mass matrix remain
unshaped. Compensating for the mass terms in addition to
the lower-limb inertia can render greater dynamical changes
to further assist human subjects. In addition, the strategies
proposed in [25] cannot ensure positive definiteness of the
closed-loop mass matrix. This prohibits us from establishing
passivity or stability properties of the human-exoskeleton
system in the closed loop. The mass terms must therefore be
shaped in order to provide greater assistance while maintain-
ing the positive definiteness of the closed-loop mass matrix.

A. STATEMENT OF CONTRIBUTIONS
The specific contributions of this paper can be summarized
from the following four aspects: 1) Without making assump-
tions on the human input mapping matrix, we prove that
the matching condition for human inputs are automatically
satisfied as a consequence of shaping the bottom-right part
of the mass matrix; 2) We generalize our prior work in [25]
to shape all inertial terms in the shapeable part of the mass
matrix while ensuring its positive definiteness in the closed
loop; 3) Given a positive-definite, closed-loop mass matrix,
we show input-output passivity from human inputs to joint
velocity with total closed-loop energy as the storage func-
tion. Using common assumptions of human joint control
policies, we show Lyapunov stability of the closed-loop
human-exoskeleton system; 4) We show extensive results of
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the proposed assistive strategies such as reduced metabolic
cost and human torques in simulation. We also show that
exoskeleton torques that correspond to the assistive strategies
closely match the human torques of an able-bodied subject.

The rest of the paper is organized as follows. In Section II,
we first review the coupled human-exoskeleton dynamics.
We then review the generalized matching framework for total
energy shaping in Section III, after whichwe highlight passiv-
ity and Lyapunov stability results based on common human
control policies in Section IV. In Section V, we present sim-
ulation results of the proposed energy shaping strategies and
their advantages over conventional control paradigms on an
human-like biped model. We also show exoskeleton torques
based on an able-bodied subject’s kinematic data. Finally,
we summarize limitations of the proposed study and provide
possible future research directions.

II. MODELING AND DYNAMICS OF THE BIPED
In this paper, we are interested in proposing a general
matching framework applicable for lower-limb exoskeletons.
To begin, we review the sagittal biped model and its dynam-
ics as presented in [25]. Because walking is primarily a
sagittal-plane task [26], and assisting hip flexion renders the
most metabolic cost reduction [27], we therefore combine the
biped’s two hip joints into one for creating amodel that ambu-
lates in the sagittal plane. We also assume the upper-body
mass of the biped is lumped at the hip joint for simplicity.

A. BIPED CONFIGURATION AND DYNAMICS
The biped is modeled as a kinematic chain with respect to
an inertial reference frame (IRF, to be specified later) shown
in Fig. 1. Depending on whether the exoskeleton is unilateral
or bilateral, we choose to model the stance and swing legs
separately (unilateral case [24]) or the entire lower body as
a kinematic chain from the stance foot to the swing foot
(bilateral case [25]). The biped’s equation of motion (EOM)
with contact constraints can be expressed as

M (q)q̈+ C(q, q̇)q̇+ N (q)+ A(q)Tλ = τ, (1)

where n is the number of DOFs, M (q) ∈ Rn×n is the
positive-definite mass matrix, C(q, q̇) ∈ Rn×n is the Cori-
olis/centrifugal matrix, and N (q) ∈ Rn×1 is the gravitational
forces vector. The configuration space is given as Q = R2

×

Tn−2, and the corresponding configuration vector is q =
(θx, θy, θab, qTs )

T
∈ Rn, whereTn−2 is the (n−2) torus, θx and

θy are the Cartesian coordinates with respect to the IRF, and
θab ∈ S1 is an absolute angle defined with respect to the ver-
tical axis. The shape vector qs ∈ Rn−3 contains joint angles
based on the biped model (to be specified in the simulation
section). The matrix A(q)T ∈ Rn×c is the constraint matrix
defined as the gradient of the holonomic constraint functions,
and c is the number of contact constraints that change during
different contact conditions. The Lagrange multiplier λ is
calculated using the method in [28] as

λ = λ̂+ λ̄τ, where

FIGURE 1. Kinematic model of the human body and the exoskeleton. The
stance leg is shown in solid black and the swing leg in dashed black. The
Center of Pressure (COP) is fixed at the heel as shown here during the
heel contact phase. For modeling a human wearing a bilateral
exoskeleton, we combine the stance and swing leg models, and the
forces (Fx, Fy) are implicitly modeled in the EOM of the kinematic chain.
Red arcs indicate human joint torques. For this biped model, (px,py)
indicates the position of the heel, 8 denotes the angle of the heel
defined with respect to the vertical axis, θa is the ankle angle, θk is the
knee angle, (hx,hy) denotes the hip position, θh is the hip angle defined
between stance and swing thighs, and θsk and θsa denote the swing knee
and ankle angles, respectively.

λ̂ = W (q)[Ȧ(q)q̇− A(q)M (q)−1(C(q, q̇)q̇+ N (q))],

λ̄ = W (q)A(q)M (q)−1, where

W (q) = (A(q)M (q)−1A(q)T )−1. (2)

Because we are modeling the human body and the
exoskeleton as a whole, the torque τ = τhum + τexo at
the right-hand side of (1) comprises both the human and
the exoskeleton input terms, τhum = B(q)v + J (q)TF and
τexo = B(q)u, respectively. The mapping matrix B(q) ∈ Rn×p

maps both the human muscle input term v ∈ Rp and the
exoskeleton actuator torques u ∈ Rp into the dynamics.
Without loss of generality, we assume B(q) takes the form
of [0p×(n−p), Ip]T . In general, the vector F includes the
interaction forces between the modeled subsystem and the
connected un-modeled links. For the biped model shown
in Fig. 1, the body Jacobian matrix J (q)T ∈ Rn×3 maps the
vector F = (Fx,Fy,Mz)T ∈ R3×1 in τhum into the dynamics,
where F denotes the interaction forces between the hip of the
stance model and the swing thigh, (Fx,Fy)T indicates two
linear forces, andMz indicates a moment in the sagittal plane.

B. HOLONOMIC CONTACT CONSTRAINTS
In the previous section, we explicitly modeled contact
in the dynamics without specifying the choice of con-
tact constraints. In this section, we define the general
form of holonomic contact constraints encountered during
the single-support period of human walking. These con-
straints can be expressed as relations between the position
variables, i.e.,

a(q1, q2, . . . , qc) = 0c×1, (3)
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where qi denotes the i-th element of the configuration
vector q. The single-support period can be separated into heel
contact, flat foot, and toe contact phases as in Fig. 2. Based
on the contact conditions depicted in this figure, there are
c = 2 constraints for heel contact and toe contact, whereas
flat foot has c = 3. We will later show that the proposed
framework is able to accommodate arbitrary numbers of
contact constraints. In this paper, we assume the constraint
matrix A(q) has the constant form

A(q) = ∇qa(q1, q2, q3, . . . , qc) = [Ic 0c×(n−c)]. (4)

FIGURE 2. Heel contact (left), flat foot (center), and toe contact
conditions (right) during the single-support period of human locomotion.
To simulate dynamic walking we assume the biped is walking on a slope
with angle γ , i.e., φ = γ during flat foot condition. The IRF is defined at
the toe during toe contact with (tx, ty) indicating the Cartesian
coordinates of the toe. This figure is reproduced from [25].

This constant form (i.e., Ȧ(q) = 0) can be achieved by
defining the IRF at the stance toe during toe contact and at
the stance heel during heel and flat foot contact. Note that
for the swing leg there are no contact constraints defined
(A(q) = 0).

III. ENERGY SHAPING CONTROL
Energy shaping is a control method that alters the dynamical
characteristics of a mechanical system [16]. In this section
we first review the traditional definition of energy shaping
and then derive the proposed matching framework.

A. ENERGY SHAPING: A BRIEF REVIEW
This section first reviews the definition for energy shap-
ing as presented in [25]. Consider a forced n-dimensional
Euler-Lagrange system with configuration space Q (assume
Rn for simplicity) and its tangent bundle TQ =

⋃
q∈Q TqQ.

We can describe the system by a Lagrangian L(q, q̇) defined
as

L(q, q̇) = T(q, q̇)− V(q) =
1
2
q̇TM (q)q̇− V(q), (5)

where the Lagrangian L(q, q̇) : TQ → R is a smooth func-
tion, q ∈ Q is the generalized coordinates vector, and q̇ ∈ TqQ
is the velocity vector. The scalar function T(q, q̇) : TQ→ R
is the kinetic energy defined based on the positive-definite
mass matrix M (q) ∈ Rn×n, and V(q) : Q → R is the

potential energy. The Lagrangian dynamics are given by

d
dt
∂q̇L(q, q̇)− ∂qL(q, q̇) = τ,

⇔ M (q)q̈+ C(q, q̇)q̇+ N (q) = τ,

(6)

where the dynamic terms are defined similar to the ones in (1).
For the underactuated case, τ = B(q)u where matrix B(q) ∈
Rn×p maps the control input u ∈ Rp to the n-dimensional
dynamics (n > p).
Now consider an unforced Euler-Lagrange system defined

by another Lagrangian L̃(q, q̇) : TQ→ R described as

L̃(q, q̇) = T̃(q, q̇)− Ṽ(q) =
1
2
q̇T M̃ (q)q̇− Ṽ(q) (7)

with a new kinetic energy T̃(q, q̇) : TQ → R and a new
potential energy Ṽ(q) : Q → R. The resulting Lagrangian
dynamics can be expressed as

d
dt
∂q̇L̃(q, q̇)− ∂qL̃(q, q̇) = 0,

⇔ M̃ (q)q̈+ C̃(q, q̇)q̇+ Ñ (q) = 0,

(8)

where C̃(q, q̇) and Ñ (q) = ∇qṼ(q) are the closed-loop
Coriolis/centrifugal matrix and gravitational forces vector,
respectively.

The systems (6) and (8) match if (8) is a possible
closed-loop system of (6), i.e., there exists a control law u
such that (6) becomes (8). Standard results in [29] shows
that these two systems match if and only if there exists a
full-rank left annihilator B(q)⊥ ∈ R(n−p)×n of B(q), i.e.,
B(q)⊥B(q) = 0 and rank(B(q)⊥) = (n − p), ∀q ∈ Q, such
that

B⊥[Cq̇+ N −MM̃−1(C̃q̇+ Ñ )] = 0, (9)

where q and q̇ are omitted in (9) and hereafter to abbreviate
notations.

Equation (9) is the so-called matching condition, which
is a nonlinear partial differential equation that determines
the achievable closed-loop energy. While (9) can be trivially
satisfied for fully actuated systems, its solution can be quite
difficult to obtain for underactuated system. Assuming (9) is
satisfied and following the same procedure in [18], we can
obtain that

Bu = Mq̈+ Cq̇+ N − (M̃ q̈+ C̃q̇+ Ñ ). (10)

Solving (8) for q̈, one can obtain the expression as

q̈ = −M̃−1(C̃q̇+ Ñ ). (11)

Substituting (11) into (10) and multiplying the left-pseudo
inverse of B(q) (matrix inverse if n = p) on both sides of (10),
one obtains the control law as [18]

u = (BTB)−1BT [Cq̇+ N −MM̃−1(C̃q̇+ Ñ )]. (12)
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B. EQUIVALENT CONSTRAINED DYNAMICS
In this section, we review the procedure in [25] to derive the
equivalent constrained dynamics (ECD). Plugging expres-
sions for A and λ into (1), we can obtain the ECD in the form
of (6) that has fewer or zero unactuatedDOFs compared to the
generalized dynamics (1) without constraints. The equivalent
constrained form of (1) is expressed as

Mλq̈+ Cλq̇+ Nλ = Bλv+ JTλ F + Bλu, (13)

where

Mλ = M ,

Cλ = (I − ATWAM−1)C +XXXATWȦ,

Nλ = (I − ATWAM−1)N ,

Bλ = (I − ATWAM−1)B,

JTλ = (I − ATWAM−1)JT , (14)

W = (AM−1AT )−1. (15)

Given the open-loop dynamics (13), we define the desired
closed-loop ECD as

M̃λq̈+ C̃λq̇+ Ñλ = B̃λv+ J̃λF, (16)

where M̃λ = M̃ is the mass matrix in the closed-loop ECD
and is assumed to be positive-definite. Ensuring this matrix to
be positive-definite will be discussed later in the simulation
section. The remaining terms in (16) are given by

C̃λ = (I − AT W̃AM̃−1)C̃ +XXXAT W̃ Ȧ,

Ñλ = (I − AT W̃AM̃−1)Ñ ,

B̃λ = (I − AT W̃AM̃−1)B̃,

J̃Tλ = (I − AT W̃AM̃−1)J̃T ,

W̃ = (AM̃−1AT )−1, (17)

where C̃ and Ñ are the dynamics terms of (1) in closed
loop. We denote the closed-loop human input vector as
τhum = B̃λv + J̃Tλ F but make no assumptions on the human
inputs v and F .

C. MATCHING BASED ON CONSTRAINED DYNAMICS
We begin this part by introducing the generalized matching
condition based on ECD. Given (13) and (16), we follow the
procedure from (6) to (9) to derive the matching condition for
the ECD as

B⊥λ [Cλq̇+ Nλ − Bλv− J
T
λ F

+MλM̃
−1
λ (B̃λv+ J̃Tλ F − C̃λq̇− Ñλ)] = 0, (18)

which can be separated into sub-matching conditions that
correspond to matching for mechanical energy and human
inputs, respectively:

B⊥λ [Cλq̇+ Nλ −MλM̃
−1
λ (C̃λq̇+ Ñλ)] = 0, (19)

B⊥λ [Bλv+ J
T
λ F −MλM̃

−1
λ (B̃λv+ J̃Tλ F)] = 0. (20)

1) MATCHING FOR MECHANICAL ENERGY
Prior research showed that the bottom-right submatrix of
a mass matrix is the mass matrix of a lower-dimensional
mechanical system [19]. This motivates us to shape the
bottom-right part in Mλ, which may render matching con-
ditions that are easier to satisfy. Following the procedure
in [24], we decomposeMλ into matrix blocks, i.e.,

M =
[
M1 M2
MT

2 M4

]
= Mλ, (21)

whereM1 ∈ Rc×c,M2 ∈ Rc×(n−c). We want the bottom-right
part to be shaped via control, hence we define the closed-loop
inertia matrix as

M̃ =
[
M1 M2

MT
2 M̃4

]
= M̃λ, (22)

where the choice of M̃4 will be specified later.
Note from [18] that we have the relationship between

C andM as

Cq̇ = Dq(Mq̇)q̇−
1
2
∂q(q̇TMq̇), (23)

where Dx(y) is the Jacobian matrix of partial derivatives of
vector y with respect to vector x. Because the first c DOFs
are constrained, their time-derivatives equal zero so that (23)
reduces to

Cq̇ = Dq

[
M2q̇c+1,n
M4q̇c+1,n

] [
0

q̇c+1,n

]
−

1
2
∂q(q̇Tc+1,nM4q̇c+1,n),

where the subscript (i, j) indicates rows i through j of amatrix.
Note that the submatrix M4 does not depend on q1,c based
on the recursively cyclic property in [19], yielding simplified
expressions for Cq̇ and C̃q̇ as

Cq̇ =
[
∂qc+1,n(M2q̇c+1,n)q̇c+1,n

9

]
, (24)

C̃q̇ =
[
∂qc+1,n(M2q̇c+1,n)q̇c+1,n

9̃

]
, (25)

where

9 :=
1
2
∂qc+1,n(q̇

T
c+1,nM4q̇c+1,n) ∈ R(n−c)×1,

9̃ :=
1
2
∂qc+1,n(q̇

T
c+1,nM̃4q̇c+1,n) ∈ R(n−c)×1.

Following the same procedure in [24], we calculate
(I − ATWAM−1) in (13) using the blockwise inversion of M
and define (I − AT W̃AM̃−1) accordingly as

(I − ATWAM−1) =
[

0c×c Y
0(n−c)×c I(n−c)

]
, (26)

(I − AT W̃AM̃−1) =
[

0c×c Ỹ
0(n−c)×c I(n−c)

]
, (27)

where Y = M2M
−1
4 and Ỹ = M2M̃

−1
4 . Multiplying (26) with

(24) and (27) with (25), we obtain

Cλq̇ =
[
Y9
9

]
, C̃λq̇ =

[
Ỹ 9̃
9̃

]
. (28)
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Similarly, the constrained potential forces vectors are
obtained from (15) and (17) as

Nλ =
[
YNc+1,n
Nc+1,n

]
, Ñλ =

[
Ỹ Ñc+1,n
Ñc+1,n

]
. (29)

To simplify the multiplication between Mλ and M̃−1λ ,
we apply the blockwise inversion method again to obtain

MλM̃
−1
λ =

[
Ic 0c×(n−c)
�1 �2

]
, (30)

where �1 = (I − M4M̃
−1
4 )MT

2 (M1 − M2M̃
−1
4 MT

2 )
−1
∈

R(n−c)×c and �2 = −�1Ỹ + M4M̃
−1
4 ∈ R(n−c)×(n−c). The

matrix Bλ is calculated from (15) and its annihilator B⊥λ can
be chosen as

Bλ =
[
YBc+1,n
Bc+1,n

]
,

B⊥λ =
[

Ic −Y
0(n−p−c)×c S

]
, (31)

where S = [I(n−p−c)×(n−p−c), 0(n−p−c)×p]. When the sys-
tem is fully-constrained, i.e., n = p + c, the second block
row of the annihilator disappears. It can be verified that
B⊥λ ∈ R(n−p)×n, rank(B⊥λ ) = (n − p), and B⊥λ Bλ = 0(n−p)×p.
Plugging B⊥λ , (28), (29), and (30) into (19), the left-hand side
of the matching condition (19) becomes

B⊥λ [Cλq̇+ Nλ −MλM̃
−1
λ (C̃λq̇+ Ñλ)]

=

[
Ic −Y

0(n−p−c)×c S

]
×

[
Y (9 + Nλ)− Ỹ (9̃ + Ñλ)

(9 + Nλ)− (�1Ỹ +�2)(9̃ + Ñλ)

]
=

[
Ic −Y

0(n−p−c)×c S

] [
YZ− Ỹ Z̃

Z− (�1Ỹ +�2)Z̃

]
, (32)

whereZ := 9+Nλ and Z̃ := 9̃+Ñλ. The first c rows of (32)
can be simplified as

[Ic − Y ]
[

YZ− Ỹ Z̃
Z− (�1Ỹ +�2)Z̃

]
= [−Ỹ + Y (�1Ỹ +�2)]Z̃ = (−Ỹ + YM4M̃

−1
4 )Z̃

= (−Ỹ +M2M̃
−1
4 )Z̃ = 0c×1. (33)

For contacts (e.g., heel or toe contact) that result in under-
actuation (n > p + c), additional analysis is needed to fully
satisfy the matching condition (19), i.e., the bottom (n−p−c)
rows of (32) must also be satisfied.

Note that during underactuated cases, M4 ∈ R(n−c)×(n−c)

cannot be shaped arbitrarily. We propose satisfying the
matching condition by shaping only the bottom-right p × p
part of M4, which is associated with the p actuated coordi-
nates. To show this, we first decompose and shape M4 in a
similar manner to (22) as

M4 =

[
M41 M42
MT

42 M44

]
, M̃4 =

[
M41 M42

MT
42 M̃44

]
,

where M41 ∈ R(n−p−c)×(n−p−c), M42 ∈ R(n−p−c)×p, and
M44, M̃44 ∈ Rp×p. Similar to (30), the top-left element of
M4M̃

−1
4 will be I(n−p−c). Subtracting M4M̃

−1
4 from I(n−c),

the first (n − p − c) rows of �1 will become zeroes. As a
consequence, the first (n − p − c) rows of �2 become
[I(n−p−c), 0(n−p−c)×p]. Leveraging these properties of �1
and �2, the bottom (n− p− c) rows of (32) become[
0(n−p−c)×c S

] [ YZ− Ỹ Z̃
Z− (�1Ỹ +�2)Z̃

]
= 91,n−p−c − 9̃1,n−p−c + Nc+1,n−p − Ñc+1,n−p. (34)

From [19], we know ∂M44/∂qc+1,n−p = 0(n−p−c)×1,
i.e., qc+1,n−p is cyclic in M44 ∈ Rp×p, hence 91,n−p−c −

9̃1,n−p−c equals 0(n−p−c)×1. To satisfy (34), we make the
assumption Nc+1,n−p = Ñc+1,n−p as in [24], which indicates
that the rows corresponding to the unactuated DOFs that
are unconstrained remain unshaped. By making this assump-
tion, (34) equals to zero and the matching condition (19) is
satisfied.

2) MATCHING FOR HUMAN INPUTS
In this section we show that by shaping the bottom-right
sub-matrix M44 ∈ Rp×p, the matching condition for human
input (20) will be automatically satisfied. To begin, we sepa-
rate (20) into two sub-conditions, i.e.,

B⊥λ (Bλv−MλM̃
−1
λ B̃λv) = 0, (35)

B⊥λ (J
T
λ F −MλM̃

−1
λ J̃Tλ F) = 0. (36)

To verify (35) holds true, plugging (30) and (31) into (35)
yields

B⊥λ (Bλv−MλM̃
−1
λ B̃λv)

=��
�B⊥λ Bλv− B

⊥
λMλM̃

−1
λ B̃λv

=

[
−Ic Y

0(n−p−c)×c −S

] [
Ic 0c×(n−c)
�1 �2

]
B̃λv

=

[
−I + Y�1 Y�2
−S�1 −S�2

] [
0c×c Ỹ

0(n−c)×c I(n−c)

] [
0
B̃2

]
v

=

[
−Ỹ + Y�1Ỹ + Y�2

−S�1Ỹ − S�2

]
B̃2v. (37)

From (33), we have−Ỹ +Y�1Ỹ +Y�2 = 0, therefore the
first c rows of (37) become zero. Similar to MλM̃

−1
λ in (30),

the first (n − p − c) rows of are [I(n−p−c), 0(n−p−c)×p].
Utilizing these two properties, the remaining rows of (37)
become

(−S�1Ỹ − S�2)B̃2v

= −SM4M̃
−1
4 B̃2v

= [−I(n−p−c), 0(n−p−c)×p]
[
0(n−p−c)×p

Ip

]
v

= 0(n−p−c),

which shows the last (n−p−c) rows of (37) are zeros, i.e., (35)
holds true.
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To verify (36), we first calculate B⊥λ J
T
λ F as

B⊥λ J
T
λ F

=

 Ic
textquad − Y
0(n−p−c)×c S

[ 0c×c Y
0(n−c)×c I(n−c)

] [
JT1
JT2

]
F

=

[
0c×c 0c×(n−c)

0(n−p−c)×c S

] [
JT1
JT2

]
F

=

[
0c×3
SJT2 F

]
(38)

with J = [J1, J2] ∈ R3×n, and JT1 ∈ Rc×3, JT2 ∈ R(n−c)×3.
Calculating B⊥λMλM̃

−1
λ J̃Tλ F , we have

B⊥λMλM̃
−1
λ J̃Tλ F =

[
(−Ỹ + Y�1Ỹ + Y�2)JT2

(−S�1Ỹ − S�2)JT2

]
F

=

[
0c×3
SJT2 F

]
. (39)

Subtracting (39) from (38) we obtain zero, i.e., (36) holds
true. Given both (35) and (36) are satisfied, we prove that
the matching conditions for human input are satisfied as a
consequence of shaping M44 ∈ Rp×p despite of the forms
of F and v.

Because human joint input v and the interaction forces F
are not easily measured in practice, we assume human is
studying the interaction with the exoskeleton and adapting
their gaits accordingly. In particular, we assume that human
input is mapped into the closed-loop dynamics via a specific
mapping that will make v and F disappear in the control law.
The control law that brings (13) into (16) then becomes

u = B+λ [ Cλq̇+ Nλ −MλM̃
−1
λ (C̃λq̇+ Ñλ)], (40)

where B+λ = (BTλBλ)
−1BTλ is the left pseudo inverse of Bλ.

Because this control law is not defined based on pre-defined
trajectories or tasks, it is capable of assisting different sub-
jects with them exhibiting their own preferred gait patterns
across locomotor tasks. In Section V-D, we will see that this
control law is able to provide beneficial outcome despite of
the fact that human input terms are not explicitly included.
Similar to [24], we can show that if (19) and (20) are satisfied,
matching (13) with (17) is equivalent to bringing (1) into its
desired form

M̃ q̈+ C̃q̇+ Ñ + AT λ̃ = B̃v+ J̃TF (41)

with λ̃ given as

λ̃ = (AM̃−1AT )−1AM̃−1(B̃v+ J̃TF − C̃q̇− Ñ ). (42)

IV. PASSIVITY AND STABILITY
In [24], we showed that the proposed potential energy shaping
law preserves a passive mapping from human inputs to joint
velocity in the closed loop, based on which we highlighted
Lyapunov stability with commonly assumed human policies.
We now generalize these results to the case of total energy
shaping during fully-actuated phases.

A. PASSIVITY OF THE HUMAN-EXOSKELETON SYSTEM
Consider the dynamics (1) of the human wearing the
exoskeleton with τ on the right-hand side as an input, and let
y = h(x) ∈ Rn be the output, where x denotes the system’s
state vector and is given as x = (qT , q̇T )T ∈ R2n×1. Based
on [30], a kinematic chain with dynamics of the form (1) is
passive from joint torque input to joint velocity output with
total energy E as the storage function, i.e.,

Ė = q̇TMq̈+
1
2
q̇T Ṁ q̇+ q̇TN

= q̇T (τ − Cq̇− N − ATλ)+
1
2
q̇T Ṁ q̇+ q̇TN

= q̇T τ +
1
2(
((((

(
q̇T (Ṁ − 2C)q̇+����q̇TATλ, (43)

where the skew-symmetry property (Ṁ − 2 C)T = −(Ṁ −
2 C) has been applied, and we leveraged the fact that con-
straint forces do no mechanical work [28], i.e., q̇TATλ = 0.

For a human leg without an exoskeleton (u = 0), mus-
cular input v and interaction forces F provide the torque
input in the passive mapping to leg joint velocity (note that
studies of passivity in human joint control date back to [31]).
If an energy-shaping controller preserves this human passiv-
ity property in closed loop (Fig. 3), then energy growth of the
coupled human-machine system is controlled by the human.

FIGURE 3. Feedback loops and passive mappings of a human wearing an
energy-shaping exoskeleton. This figure is reproduced from [24].

Lemma 1: The closed-loop energy function Ẽ(q, q̇) =
1
2 q̇

T M̃ (q)q̇ + Ṽ(q) is positive-definite during fully-actuated
phases given that M̃ is positive-definite.

Proof: The quadratic term 1
2 q̇

T M̃ q̇ is non-negative given
that M̃ is positive-definite, where the choice for this matrix
will be specified in the simulation section. Therefore, the pos-
itive definiteness of Ẽ relies on the positive definiteness of
the shaped potential energy Ṽ. The potential energy V can be
defined in terms of the shapeable and unshapeable rows of N
using the variable gradient method [32]:

V(q) =
∫ q

0

n∑
j=1

Nj(s) ds

=

∫ q

0

n−p∑
j=1

Nj(s) ds+
∫ q

0

n∑
j=n−p+1

Nj(s) ds

:= V1(q)+ V2(q), (44)
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where s is the integration variable. Similar to [25], we define
Ñ in a way such that BWS can be provided, i.e., the following
properties hold for Ñ :

Ñ1,n−p = N1,n−p, Ñn−p+1,n = µNn−p+1,n, (45)

where µ := g̃
g is a strictly positive number defined as the

ratio between the shaped and the original gravity parameters.
Given (44) and (45), we can obtain the shaped potential
energy

Ṽ(q) =
∫ q

0

n−p∑
j=1

Nj(s)ds+
∫ q

0

n∑
j=n−p+1

Ñj(s)ds

=

∫ q

0

n−p∑
j=1

Nj(s)ds+ µ
∫ q

0

n∑
j=n−p+1

Nj(s)ds

= V1(q)+ µV2(q). (46)

Note that Ṽ(q) defined in (46) is valid only during
fully-actuated phases, i.e., the desired gravitational forces

vector Ñ satisfies the symmetric requirement ∂Ñ
∂q

T
=

∂Ñ
∂q

in [32]. For defining valid potential energy during underactu-
ated phases, the readers are referred to the definition in [33].
Given (46), the shaped total energy takes the following form:

Ẽ(q, q̇) =
1
2
q̇T M̃ (q)q̇+ V1(q)+ µV2(q).

We set the datum for potential energy such that the poten-
tial energy V equals zero only at the datum, and for other
configurations we have V1 > 0 and/or V2 > 0. It is then easy
to see that V1 + µV2 = 0 at the datum and V1 + µV2 > 0
at all other configurations with µ > 0. Given that the kinetic
energy 1

2 q̇
T M̃ (q)q̇ is non-negative, the overall shaped energy

is positive definite.
Note that in order to retrieve a valid closed-loop poten-

tial energy, the definition of Ñ needs to satisfy the sym-
metric Jacobian matrix requirement in [32]. The definition
of Ñ in this paper only satisfies this requirement during
fully-actuated phases. However, we can still prove that Ẽ is
positive-definite during underactuated phases following the
definition of Ñ presented in [33].
Theorem 1: Given positive-definite M̃ , the closed-loop

system (41) is passive from closed-loop human input τhum =
B̃v + J̃TF to the joint velocity output y = q̇ with storage
function Ẽ , i.e., d

dt Ẽ = q̇T τhum.
Proof: The non-negativity requirement of a storage

function is satisfied by Lemma 1. The same procedure as (43)
with closed-loop dynamics (41) yields d

dt Ẽ = q̇T τhum.
This passive relationship indicates that human will control

the energy growth of the human-exoskeleton system, there-
fore ensuring the safety of human-robot interaction.

B. STABILITY OF THE HUMAN-EXOSKELETON SYSTEM
In this section, we highlight two stability results during
fully-actuated phases assuming the human is modulating the
stiffness and viscosity of a joint [31], [34]. Similar to [24],

we first consider feedback control with only the passive
output (i.e., joint velocity) and then we consider the more
general case with joint stiffness. We first state a standard
result from [35] as:
Proposition 1: Consider the passive system (41) with

input τhum and output y = q̇. Given output feedback control
τhum = σ (y), where σ is any continuous function satisfying
yTσ (y) ≤ 0, then lim

t→∞
y(t)→ 0 and the origin (q, q̇) = (0, 0)

is stable in the sense of Lyapunov.
Therefore, if we assume the human input takes the form

τhum = −Kdq̇, where Kd ∈ Rn×n is a positive semi-definite
diagonal matrix. From Theorem 1 we will have

˙̃E = −q̇TKdq̇ ≤ 0,

and thus convergence of the joints and Lyapunov stability of
the upright posture (the origin).

Now consider a human impedance controller with viscosity
given as:

τhum = −Kpe− Kdė, (47)

where Kp ∈ Rn×n is a positive semi-definite diagonal matrix,
e := q − q̄ represents the different between q and the fixed
constant vector q̄. We will eventually use (47) as the human
input for simulating different strategies.

We can also prove the stability of the closed-loop
human-exoskeleton system around the equilibrium point
(q∗, 0), where (q∗, 0) is the state that Ñ (q∗)+AT λ̃+Kp(q∗−
q̄) = 0, i.e., the forces along the shaped potential energy
balance the muscular spring forces and the ground reaction
forces. To begin, we define the Lyapunov function to be
V (q, q̇) = Ẽ +

∫ q
q0
AT λ̃(s, 0)ds + 1

2e
TKpe − V̄ , where q0

is the initial posture and V̄ is a constant such that V̄ =
Ẽ(q∗, 0)+ 1

2 (q
∗
− q̄)TKp(q∗ − q̄).

Lemma 2: The Lyapunov function V (q, q̇) is locally
positive definite around the equilibrium point (q?, 0) in the
tangent bundle TQ.

Proof: The Lyapunov function V (q, q̇) attains its min-
imum at ∂Vq(q, q̇) = 0 and ∂Vq̇(q, q̇) = 0, i.e., q̇ = 0 and
Ñ + Kpe + AT λ̃ = 0, which corresponds to the equilibrium
point (q∗, 0). At this point, we have the minimal value of
V (q, q̇) as Ẽ(q∗, 0)+ 1

2 (q
∗
− q̄)TKp(q∗ − q̄)− V̄ = 0, where∫ q

q0
AT λ̃(s, 0)ds = 0 due to the fact that constraints forces do

no work [28]. Therefore, ∀(q, q̇) 6= (q∗, 0) ∈ TQ, we have
V (q, q̇) > 0.
With V being a proper Lyapunov function, we take the

time derivative ofV (q, q̇) with closed-loop dynamics (41) and
following derivation in (43) to obtain

V̇ (q, q̇) = q̇T M̃ q̈+
1
2
q̇T ˙̃Mq̇+ q̇T Ñ + ėTKpe

= q̇T τhum + ėTKpe

= q̇T (−Kpe− Kdė+ Kpe)

= −q̇TKdq̇ ≤ 0, (48)

implying that the equilibrium point of the shaped human
exoskeleton system is Lyapunov stable [28].

95434 VOLUME 9, 2021



G. Lv et al.: Trajectory-Free Control of Lower-Limb Exoskeletons

V. SIMULATION RESULTS AND DISCUSSION
For studying the effects of the proposed shaping strategies
during simulated walking, we consider the coupled dynamics
of the two legs shown in Fig. 1, which is termed as the full
biped model and is modeled as a kinematic chain with respect
to the IRF defined at the stance heel. The configuration vector
of the full biped model is given as qe = (θx, θy, θab, qTs )

T
=

(px, py, φ, θa, θk, θh, θsk, θsa)T ∈ R8×1, where the definitions
for joint angles are given in Fig. 1. In this section we simulate
the full biped wearing a bilateral exoskeleton with different
energy shaping strategies, where the model and simulation
parameters are shown in Table 2.

TABLE 1. Solutions of 0 < ki ≤ 1 that ensure M̃ is positive definite.

A. IMPEDANCE CONTROL FOR HUMAN INPUTS
In order to predict the effects of the proposed control
approach, we must first construct a human-like, stable walk-
ing gait in simulation. According to the results in [36], a sim-
ulated 7-link biped can converge to a stable, natural-looking
gait using joint impedance control. Therefore, we assume
that the human has input torques at the ankle, knee and hip
joints, and each joint torque takes the form of a set-point
impedance controller. For simplicity, we keep the gains of
these impedance controllers constant instead of having a dif-
ferent set of parameters with respect to each phase of stance.
The human input vector τhum for the full biped model is given
as

τThum = [01×3,−(qei − q̄ei)TKT
pi − q̇

T
eiK

T
di ]

T , (49)

where i = {a, k, h, sk, sa}. Parameters Kpi, Kdi, qei, and q̄ei
are constant values corresponding to the stiffness, viscosity,
actual angle, and equilibrium angle of each joint, respectively.
This particular form of human input is merely an assumption
we made to simulate human walking, which does not repre-
sent real human joint torques. The proposed approach is not
confined to any forms of human joint torques. Later on in
Section V-D we will see beneficial results of the proposed
approach using an able-bodied human subject’s kinematic
data.

B. HYBRID DYNAMICS AND ORBITAL STABILITY
Biped locomotion can be modeled as a hybrid dynamical
system that includes continuous and discrete dynamics.
Impacts happen when the swing heel contacts the ground
and subsequently when the flat foot impacts the ground.
The corresponding impact equations map the state of the

biped at the instant before impact to the state at the instant
after impact. Note that no impact occurs when switching
between the flat foot and toe contact configurations. The
hybrid dynamics and impact maps during one step are com-
puted in the following sequence [25]:

1. Mq̈e +N + ATheelλ = τe if aflat 6= 0,

2. q̇+e = (I −W(AflatW)−1Aflat)q̇−e if aflat = 0,

3. Mq̈e +N + ATflatλ = τe if |cp(qe, q̇e)| < lf,

4. q̇+e = q̇
−
e , (qe(1)

+, qe(2)+)T = R if |cp(qe, q̇e)| = lf,

5. Mq̈e +N + ATtoeλ = τe ifH(qe) 6= 0,

6. (q+e , q̇
+
e ) = D(q−e , q̇

−
e ) ifH(qe) = 0,

where this sequence of continuous and discrete dynamics
repeats after a complete step, i.e., phase 6 switches back to
phase 1 for the next step. The matrixM ∈ R8×8 is the inertia
matrix of the full biped model, and N ∈ R8×1 groups the
model’s Coriolis and gravitational forces. The terms Aheel,
Aflat and Atoe ∈ Rc×8 denote the constraint matrices for the
heel contact, flat foot, and toe contact conditions depicted
in Fig. 2, respectively, and the superscripts ‘‘−’’ and ‘‘+’’
indicate values before and after each impact, respectively.
The term R = [lf cos(γ ), lf sin(γ )]T models the change in
IRF for foot length lf. Note that W = M−1ATflat, and the
vector cp(qe, q̇e) is the COP defined with respect to the heel
IRF calculated using the conservation law of momentum. The
ground clearance of the swing heel is denoted by H(qe), and
De denotes the swing heel ground-strike impact map based
on [37]. The overall torque input τe ∈ R8×1 consists of both
the human input vector τhum ∈ R8×1 and the robotic input
vector τexo ∈ R8×1.

Due to the difficulty of analytically proving stability
for hybrid systems in general, we checked local stability
numerically by applying the Poincaré method. Letting xe =
(qTe , q̇

T
e )
T be the state vector of the full biped, a walking gait

corresponds to a periodic solution curve x̄e(t) of the hybrid
system such that x̄e(t) = x̄e(t + T ), for all t ≥ 0 and
some minimal T > 0. The set of states occupied by the
periodic solution defines a periodic orbit O := {xe|xe =
x̄e(t) for some t} in the state space. The step-to-step evolution
of a solution curve can be modeled with the Poincaré map
P : S → S, where S = {xe|H(qe) = 0} is the switching
surface indicating initial heel contact. The intersection of a
periodic orbit with the switching surface is a fixed point x∗e =
P(x∗e ). We can linearize the Poincaré map about this point
to analyze the local stability of the hybrid dynamical system
according to the standard result in [37]. If the eigenvalues
of the Jacobian ∇xeP(x

∗
e ) are within the unit circle, where

x∗e = G∩O, then the periodic orbitO is locally exponentially
stable in the hybrid system. The eigenvalues are calculated in
simulation by first allowing the biped to converge to a fixed
point and then by performing the perturbation analysis similar
to [37].
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C. ENERGY SHAPING STRATEGIES
In Section III, we satisfied the matching conditions without
specifying the choices of M̃4 and Ñ . In this section, we will
propose a specific way to define these two terms and simulate
the associated shaping strategies as a case study.

Prior work in [12] indicates that inertia compensation
can counteract the side effects of the exoskeleton inertia on
human legs during walking. Based on this fact, we wish to
define the closed-loop dynamics with reduced mass and iner-
tia parameters so that assistance can be produced through the
actuators of an exoskeleton. However, the inertia matrix M̃

may not remain positive-definite given arbitrary reduced
mass and/or inertial parameters in M̃4. Therefore, we need
to ensure M̃ > 0, i.e., M̃ is positive definite while reducing
its parameters.

1) ENSURING POSITIVE DEFINITENESS OF M̃

One interesting property about the inertia matrix is that the
mass and inertial terms show up following a ‘‘cyclic-like
property’’ as discussed in [19], i.e., the number of links whose
parameters show up in the matrix gradually decreases when
traversing from the top-left corner to the bottom-right corner
of the mass matrix. This suggests that each ‘‘layer’’ of the
matrix carries a different weight in the overall kinetic energy.
Motivated by this fact, we defined M̃4 ∈ R5×5 as:

k1 ·M(4,4) k1 ·M(4,5) . . . k1 ·M(4,8)
k1 ·M(5,4) k2 ·M(5,5) . . . k2 ·M(5,8)

...
...

. . .
...

k1 ·M(8,4) k2 ·M(8,5) . . . k5 ·M(8,8)

 , (50)

where 0 < ki ≤ 1 is the parameter that needs to
be determined. To ensure M̃ is positive definite, we can
formulate this problem as finding possible parameter sets
K = [k1, k2, . . . , k5]T ∈ R5×1 such that the eigenvalues
of M̃ stay strictly positive given constraints on ki and joint
position qe(j), i.e.,

eig(M̃(qe)) > 0,

subject to

{
qe(j) ∈ [−

π

2
,
π

2
], j = 1, 2, . . . , 8

0 < ki ≤ 1, i = 1, 2, . . . , 5

To find solutions for ki, we adopted the model and simu-
lation parameters from [25] and used the MATLAB function
fmincon to find the minimized eigenvalues of M̃ with con-
straints on qe(j). The values of ki that ensures theseminimized
eigenvalues being strictly positive are shown in Table 1. Note
that we have constrained the range for each joint variable
qe(j) to be within [−π2 ,

π
2 ], which is sufficient to cover the

range for common locomotor tasks [38]. Additionally, even
if the inertial parameters differ from the true values of human
anatomical parameters, with a given set of inertial param-
eters, the positive definiteness of M̃ can still be ensured.
In practical application where human anatomical parameters
are unknown, we can apply range constraints on these param-
eters in addition to the constraints on angles and repeat the

calculation again to find the values of ki. We can increase
ranges for these constraints to obtain more accurate results
for ki.

TABLE 2. Model and simulation parameters.

2) NOTATION FOR SHAPING STRATEGIES

To conduct simulations, we chose two sets of parameters

K1 = [1, 1, 0.9, 0.8, 0.5]T , K2 = [1, 1, 0.9, 1, 0.6]T .

from Table 1 to define M̃4 with reduced mass and inertia
parameters. For comparative purposes, we also chose K3 =

[1, 1, 1.1, 1.2, 1.5]T and K4 = [1, 1, 1.1, 1, 1.4]T to add
virtual mass and inertia in M̃4. For notational purposes,
0 ≤ ki < 1 indicates that we are providing (1 − ki) · 100%
support for compensating limb mass and inertia, whereas
ki > 1 indicates we are adding (ki − 1) · 100% virtual
limb mass and inertia in closed loop. We chose ki ≥ 1 to
virtually challenge the subject, as evidence in [39] suggests
that adding functional resistance to a subject’s lower limbs
can account for specific strength deficits during walking.
As for Ñ , we chose µ = 1.15 for negative BWS (g̃ > g)
and µ = 0.85 for positive BWS (g̃ < g). To simplify nota-
tion, we name different shaping strategies as ‘‘A/R (strategy
parameters)’’, where ‘‘A’’ is the abbreviation for ‘‘Assistive’’
and corresponds to the case where 0 < ki ≤ 1 and/or
µ < 1. The letter ‘‘R’’ is the abbreviation for ‘‘Resistive’’
and corresponds to the case where ki > 1 and/or µ > 1.
For example, ‘‘A (K1)’’ indicates assistive kinetic energy
shaping with parameter K1, and ‘‘R (K4, µ = 1.15)’’ indi-
cates resistive total energy shaping with parameters K4 and
µ = 1.15.
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FIGURE 4. Phase portraits of φ, θh, and θsw with different shaping strategies indicated by ‘‘A’’ (Assistive) or ‘‘R’’ (Resistive) along with the
scaling factor of shaped energies in the parentheses. The left column compares the phase portraits of the passive gait with different shaped
gaits, and the center and right columns compare the phase portraits with different assistive and resistive strategies, respectively with ‘‘A’’
and ‘‘R’’ omitted in the figure legend. Each column shares the same legend shown in the top figure.

D. RESULTS AND DISCUSSION
We followed the same procedure presented in [25] to first
tune the human joint impedance by trial and error to find a
stable nominal gait. Once the stable nominal gait was found,
these impedance parameters were kept constant to isolate
the effects of different energy shaping controllers. Then,
we plugged in (50) and (45) into (40) to obtain the control
law for our simulation. During simulation, we first set µ = 1
so that Ñ = N and progressively changed ki to study the
effects of kinetic energy shaping on the biped. Then, we fixed
ki = 1 and alteredµ to see the independent effects of potential
energy shaping. Finally, we increased or decreased both terms
concurrently to observe the effects of total energy shaping.
For each specific combination of K and µ, we allowed the
biped to converge to a steady gait before recording data.

1) PHASE PORTRAITS
For a joint-level perspective, Fig. 4 compares the phase por-
traits of the passive gait and the shaped gaits with different
shaping strategies. Wider orbits for all joints correspond to
longer steps and taller orbits for all joints correspond to faster
steps. For cases ‘‘A (K1)’’ and ‘‘A (K2)’’, compensating vir-
tual mass and inertia provides less range of motion and slower
joint velocities compared to the passive gait. The opposite
effect is observed for the cases of ‘‘R (K3)’’ and ‘‘R (K4)’’
that virtually add limb mass and inertia. The center columns
of Fig. 4 compare the phase portraits with kinetic energy

shaping, potential energy shaping, and total energy shaping
with assistive strategies. We can infer from these figures that
shaping the total energy can further constrict joint motion
and velocity compared to just shaping the potential or the
kinetic energy, i.e., the phase portraits of solely shaping the
kinetic or potential energy encompass the phase portraits of
total energy shaping. Similarly, the right columns of Fig. 4
show that the phase portraits with total energy shaping are
the largest among all of the resistive strategies that adds vir-
tual mass and/or inertia. These phenomena are beneficial for
gait training and augmentation because greater human body
energetics can be shaped to allow more drastic dynamical
changes on the joints compared to only shaping the potential
energy [24] or only compensating for the lower-limb inertia
as in [25].

2) GAIT CHARACTERISTICS
We also recorded the step length and step linear velocities
during simulation once steady walking was achieved, where
the results are shown in Table 3. From this table, we can see
that by compensating for the mass and inertia parameters via
kinetic energy shaping (‘‘A (K1)’’ and ‘‘A (K3)’’), the biped
has shorter and slower steps compared to the passive gait,
whereas adding the mass and inertia parameters (‘‘R (K3)’’
and ‘‘R (K4)’’) yields faster and longer steps.
For total energy shaping cases ‘‘A (K1, µ = 0.85)’’ and

‘‘A (K2, µ = 0.85)’’, although the biped’s step length remains
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TABLE 3. Step length and step linear velocity recorded in simulation with
different shaping strategies.

close to the case of solely shaping the kinetic energy with K1
and K2, the step linear velocity of the biped drops drastically.
Similar observations can be made for the resistive cases
‘‘R (K3, µ = 1.15)’’ and ‘‘R (K4, µ = 1.15)’’; total energy
shaping renders greater increments in step linear velocity
compared to the case of solely shaping the kinetic energy.
This indicates that total energy shaping can further affect
the biped’s step linear velocity compared to shaping the
kinetic energy alone. Depending on the goal for gait training,
the most appropriate shaping strategies can be chosen and
adjusted to promote different gait characteristics.

3) SIMULATED HUMAN AND EXOSKELETON TORQUES
To further study the effects of the proposed shaping strategies
on human walking, we plotted the human hip, stance knee,
and swing knee torques with different strategies during one
steady step in Fig. 7. From this figure, we can see that
the absolute value of the assisted human torque is tended
to be smaller than the passive ones. This indicates that the
proposed assistive strategies via total energy shaping can
possibly augment the human muscle forces during walking.
In the contrast, the magnitude of human torques with resistive
strategies were greater than the passive ones, indicating that
resistive strategies can force the human to expend more effort
during walking.

We also plotted the exoskeleton torque with cases
‘‘A (K1, µ = 0.85)’’ and ‘‘R (K3, µ = 1.15)’’ during one
steady step, where the results are shown in Fig. 5. Within one
steady step, the assistive shaping strategy performs negative
network by removing the total energy, whereas the resistive
strategy does the opposite by injecting total energy. The
work done by the exoskeletons was −0.163 J/kg for the
assistive strategy and 0.140 J/kg for the resistive strategy
(with 0 J/kg for the passive gait), and the overall mass for the
biped is 60.75 kg. Based on [40], human muscles perform
negative work per step during ramp and stair descent tests.
This indicates that the assistive strategy doing negative work
can assist human subjects to dissipate energy during down
slopewalking, whichmay eventually lead tometabolic reduc-
tion (see Section V-4). Similarly, authors in [41] showed that
the generator of the proposed unpowered exoskeleton is able
to harvest kinetic energy for generating electricity, which can
be used to power the wearable electronics. This result enables
the possibility of applying the proposed assistive strategy on

FIGURE 5. Exoskeleton torque for cases ‘‘A (K1, µ = 0.85)’’ (top) and
‘‘R (K3, µ = 1.15)’’ (bottom) during one steady step. For both figures,
directions of the exoskeleton torques align with the human torques
shown in Fig. 7.

FIGURE 6. The estimated metabolic costs with different shaping
strategies. The parameter Ki was used for kinetic energy shaping in
case i . For potential energy shaping, µ = 0.85 and µ = 1.15 were used for
the first and last two cases, respectively. Numbers on top of each bar
denotes the sum of (51) for all actuated human joints.

our exoskeleton [42] to generate electricity during periods
of negative work, which may help extend the exoskeleton’s
battery duration in practice.

4) METABOLIC COST
A key metric for evaluating an exoskeleton is whether it
reduces the human user’s metabolic cost of walking [14].
The integral of the squared electromyography (EMG) read-
ings from the soleus and vastus lateralis muscles are a good
representation of total metabolic cost [43]. Assuming EMG
(or humanmuscle) activation is directly related to joint torque
production, the authors of [44] proposed a simulation-based
metric for metabolic cost

α2j =

∫ T
0 v2j (t)dt

T (mgl)2
≈

∑NT
i=1v

2
j (i)1t(i)

T (mgl)2
, (51)
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FIGURE 7. Simulated human torque τh, τk, τsk of the passive, assistive, and resistive gaits during one steady step. Each data point on the curve was
recorded once steady gait was achieved. For the stance/swing knee torque, positive indicates extension/flexion whereas negative indicates
flexion/extension, respectively. The hip torque in the figure is the inter-leg torque instead of individual’s real hip torque with positive indicating
extension and negative indicating flexion.

where T is the step time period,NT is the number of timesteps
in the simulation, vj is the joint moment, 1t(i) is the i-th
timestep, m is the overall mass of the biped, and l is the
length of the biped leg. We chose the nondimensionalized
torque square (51) to isolate the effects of changing gait
characteristics such as gait speed so that metabolic costs can
be compared across different shaping strategies.

During simulation, we first allowed the biped’s gait to
converge to a stable limit cycle given an energy shaping strat-
egy. By plugging energy shaping strategies (i.e., τexo) into
the overall dynamics, we altered the kinematics of the biped
in the closed loop, which were recorded once steady-state
walking has been achieved. Based on these closed-loop kine-
matics, we computed the closed-loop human joint torques vj
given in (49) and summed them up to be all human joint costs.
These costs were then plugged into (51) to estimate the effects
of energy shaping on the metabolic cost of walking, where
different cases are shown in Fig. 6.
From this figure, we can see that all of the assistive strate-

gies reduce the metabolic cost compared to the passive gait,
whereas all resistive strategies increase the metabolic cost.
This meets our expectation that offloading the weight and
inertia of a patient makes it easier to practice walking, and
adding resistance to a patient makes the subject consume
more energy. It is worth noting that compensating limb mass
and inertia in M̃4 in addition to gravity by total energy
shaping consumed less (more) energy compared to the cases
of solely shaping the kinetic energy with assistive (resis-
tive) strategies. These results suggest that the energy shaping
approach could provide meaningful assistance during gait
rehabilitation, where a clinician can adjust the scaling factors
to actively manipulate human effort.

5) NORMATIVE KINEMATIC DATA
To further verify the efficacy of the proposed approach,
we examined the exoskeleton torques with able-bodied
human subject’s kinematic data from [45], where the results
are shown in Fig. 8. The able-bodied subject in [45]
was walking on a treadmill with different incline angles
(−10◦, 0◦, 10◦) at 1.2 m/s, and the kinematic data was
recorded once steadywalking has been achieved. FromFig. 8,
we can see that all assistive ankle torques closely match the
human torques. These assistive strategies provide the neces-
sary dorsiflexion torque at terminal stance in all three tasks
to help propel the subject’s body forward. On the contrary,
resistive ankle torques have opposite shapes compared to the
human torques to add extra load for users when completing
locomotor tasks. Compared to the potential energy shaping
method introduced in [24], the proposed approach provides
mild assistance at terminal stance instead of torques with
aggressive magnitudes, which can be dangerous to human
subjects. The assistive strategies for the knee joint at terminal
stance has an opposite sign compared to the human torque,
which is counterproductive. This will be discussed with
details in Section VI.We also calculated the work done by the
exoskeleton within a step by inputting the same able-bodied
human subjects’ passive gait data. By assuming that these
subjects’ joint kinematics do not change much in the closed
loop, the exoskeleton performs positive work during upslope
walking and negative work during downslope walking, which
correspond to the work done by human reported in [46].
With our prior experimental results on potential energy shap-
ing [25] across different tasks, we can safely assume that the
proposed approach can provide task-invariant assistance for
human subjects.
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FIGURE 8. Assistive and resistive exoskeleton torques calculated using kinematic data of able-bodied human subjects from [45] walking at 1.2 m/s. All
the figures share the same legend and axis. From left to right: the torques acting on ankle and knee joints based on level ground (0◦), incline (10◦), and
decline (−10◦). The red solid lines represent the averaged human torques with variance. Positive values represent ankle dorsiflexion and knee extension
torques.

6) COMPARISON WITH THE FINITE STATE MACHINE
APPROACH
In this section, we compared performance of the proposed
energy shaping strategies with a classical control paradigm
for lower-limb exoskeletons, i.e., Finite StateMachine (FSM)
structure with Proportional-Derivative (PD) controllers as
presented in [3]. In [3], the gait cycle is divided into dif-
ferent phases (i.e., states), and these states employ PD con-
trollers with different sets of proportional and derivative
gains. We adopted this structure and the associated param-
eters in [3] and implemented them on our full biped model
for simulations. Because our full biped model only has an
instantaneous double support phase, we removed the dou-
ble support state and its associated control actions in [3]
to conduct simulations, where the simulated torques of the
FSM structure are shown in Fig. 9.

FIGURE 9. FSM torques during one steady step. Directions of torque align
with the ones in Fig. 7.

We plotted phase portraits and estimated metabolic costs
with both the proposed assistive energy shaping strategies
and the FSM control paradigm in Figs. 10 and 11, respec-
tively. To ensure a fair comparison, we set ankle torques
of the energy shaping strategies to be zero, as the FSM
paradigm presented in [3] only considers actuation at hip and

knee joints. From Fig. 10, we can see that the phase portraits
rendered by assistive energy shaping strategies were largely
contained in the FSM phase portraits, i.e., the energy shaping
strategies rendered greater changes in both angular positions
and velocities, which indicates the assistive energy shaping
strategies outperformed the FSM paradigm in terms of alter-
ing human users’ joint kinematics. From Fig. 11, we can see
that even though ankle torques of the assistive energy shaping
strategies were set to zero, the remaining knee and hip torques
still managed to reduce the metabolic cost. The FSM con-
trol paradigm, on the contrary, increased the metabolic cost
compared to the passive gait. It is worth noting that the FSM
control paradigm proposed in [3] was originally designed to
track reference trajectories instead of augmenting volitional
human motion. Nevertheless, results in Fig. 11 indicate that
this kinematic based control method does not help improve
energy expenditure during simulated walking.

VI. LIMITATION OF THE STUDY
The assistive strategies defined in this paper aim to compen-
sate for the human-exoskeleton system’s gravitational forces
and inertial terms in the mass matrix, which is not always
beneficial during the entire gait cycle. For example, the center
of mass of the subject’s lower extremities is ahead of the knee
joint during late stance. In order to reduce torques exerted by
gravitational forces during this phase, the proposed assistive
strategies generated flexion torque, which is counterproduc-
tive as shown in Fig. 8. Adding virtual weight and inertia
during this phase enables the exoskeleton to provide knee
extension torque, which can help swing the subject’s limb
upward. We can improve the current proposed strategies by
customizing shaping parameters through online optimiza-
tion. By relaxing the constraints that assistive parameters
(i.e., ki and µ) need to be less than one, these optimization
procedures can find the corresponding optimal strategies dur-
ing different phases to produce the best gait benefits [47].
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FIGURE 10. Comparison for the phase portraits with FSM and assistive energy shaping strategies. Assistive
strategies with parameter sets ‘‘A(K1, µ = 0.85)′′ and ‘‘A(K2, µ = 0.85)′′ were selected to render the phase
portraits. For a fair comparison we set ankle torques of the energy shaping strategies to be zero.

FIGURE 11. Estimated metabolic costs comparison between assistive
energy shaping strategies and the FSM control paradigm. Kinetic energy
shaping parameter Ki was used in case i , and potential energy shaping
parameter µ = 0.85 was used for both cases. We set the ankle torques of
energy shaping strategies to zero for a fair comparison.

In this paper, we assume the upper-body mass of the biped
is lumped at the hip joint. This portion of the biped’s mass
plays a dominant role in deciding the positive definiteness of
the mass matrix, therefore it is very difficult to reduce (i.e.,
compensate for) them given the proposed definition of M̃
while maintaining its positive definiteness. For the particular
biped model used in this paper, the shaping parameters k1
and k2 must equal to 1 as the hip mass appears in layers
of the mass matrix that correspond to these two parameters.
Finding complete solutions of the matching conditions and
alternative ways to define M̃ can grant us more flexibility in
compensating for hip and upper-body masses while ensuring
its positive definiteness.

The proposed control scheme requires knowledge of the
subject’s limb inertial parameters as well as the exoskele-
ton’s link parameters. The latter can be easily acquired via

Solidworks, while the former can be estimated following the
method introduced in [38], i.e., estimating the limb’s inertial
parameters in proportion to the overall body mass, or through
system identification by conducting the series of experiments
presented in [48]. Model uncertainties and parametric errors
may result in torques with different magnitudes, but they
can still be assistive or resistive as intended. Large model
uncertainties can also damage the passive relationship from
human torque input to joint velocity. However, with minor
uncertainties, wemay be able to show that passivity still exists
between the human input and joint velocity but with a dif-
ferent storage function. The effects of model uncertainties on
passivity and control performance will be further investigated
in future studies.

Finally, we understand the necessity and importance of
including experimental results in an exoskeleton-related
research paper. However, there are currently no highly-
backdrivable, commercialized powered hip-knee-ankle
exoskeletons available for sale on the market. This fact
makes it almost impossible for us to implement the pro-
posed strategies on a physical exoskeleton to conduct exper-
iments on human subjects. We will further verify our results
via experiments in the future once such devices become
accessible.

VII. CONCLUSION
In this paper, we generalized our prior work in underactuated
total energy shaping to shape both the mass and lower-limb
inertia in the actuated part of the mass matrix. We pro-
posed a novel way to define the closed-loop mass matrix
with reduced inertial parameters by respecting its inherent
structure meanwhile ensuring its positive definiteness. With
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positive-definite mass matrix in the closed loop, we estab-
lished passivity from human inputs to joint velocities with
total closed-loop energy as the storage function. Based on
two common assumptions on human input, we showed Lya-
punov stability results for the human-exoskeleton system in
the closed loop. Simulation results show that the proposed
energy shaping strategies assisted (or resisted) the biped
during walking by reducing (or increasing) the magnitude
of human torque profiles and metabolic cost. In addition,
the proposed assistive strategies outperformed the classical
FSM control paradigm in altering joint kinematics and reduc-
ing metabolic costs during walking. We further verified the
proposed approach by studying exoskeleton torques with
able-bodied subject’s kinematic data. Future work includes
refining this control philosophy to explore the optimal strate-
gies for reducing metabolic cost [47] and studying clinical
outcomes for different patient populations with the powered
knee-ankle exoskeleton presented in [42].
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