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Abstract— Task-invariant approaches are desirable in exoskele-
ton control design as they have the potential of providing
consistent assistance across locomotor tasks. Different from
traditional trajectory-tracking approaches that are specific
to tasks and users, task-invariant control approaches do not
replicate normative joint kinematics, which could eliminate
the need for task detection and allow more flexibility for
human users. In this paper, we propose a task-invariant control
paradigm for lower-limb exoskeletons to alter the human user’s
centroidal momentum, i.e., a sum of projected limb momenta
onto the human’s center of mass. We design a virtual reference
model based on human user’s self-selected gaits to provide a
reference centroidal momentum for the exoskeleton to track and
make it adaptable to changes in gait patterns. Mathematically,
the proposed approach reduces the control design problem into
a lower-dimensional space. With the number of actuators being
greater than the dimension of the centroidal momentum vector,
we can guarantee the existence of a centroidal momentum
shaping law for underactuated systems through optimization.
Simulation results on a human-like biped show that the proposed
shaping strategy can produce beneficial results on assisting
human locomotion, such as metabolic cost reduction.

I. INTRODUCTION

People with afflictions such as muscle weakness suffer
from decreasing walking speed, partial or complete movement
impairment and therefore limit their societal participation [1].
Traditional assistive devices such as mobile walkers, body-
weight support systems are often used for assisting human
locomotion [2]. However, there exist critical drawbacks for
these devices that limit their overall adaptability. For instance,
conventional body-weight support systems can offload a
human user’s weight during walking [3], but they can only be
used in clinical environments. Similarly, mobile walkers [4]
can provide balance support for their users during walking.
However, they require constant grasping by the user and are
not equipped with joint-level actuators, therefore are not able
to provide specific assistance for impaired limbs. Emerging
powered lower-limb exoskeletons have demonstrated great
potential in assisting human locomotion. Equipped with
actuators, they can inject active energy into the human-
exoskeleton system to compensate for the missing functions
of impaired limbs [5], offload weights of extra loads [6], or
reduce the human user’s energy expenditure [7].

Exoskeleton control paradigms can be roughly divided
into two categories: trajectory-based and trajectory-free
approaches [8]. Trajectory-based control paradigms [9] track
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predefined kinematic trajectories, which does not encourage
active user participation [8] nor promote user-friendly human-
exoskeleton interaction [10] as individual’s gaits are confined
to specific patterns. Although some control paradigms are
trajectory-free, they are specifically designed for dedicated
tasks such as sit-to-stand [11] or stair ascent [12], where
the proposed control methods cannot be easily translated
into other locomotor tasks. Moreover, detecting transitions
between tasks can be challenging in practice, which requires
either computationally intensive switching algorithms [13] or
manual inputs [14] from the users.

As the alternative category, trajectory-free approaches
do not confine user’s kinematics to specific gait patterns,
therefore could allow users to select their own preferred
gaits while being assisted by the exoskeletons. As one
example, human muscle activation can be measured via
Electromyography (EMG) sensors and used as real-time
sensory feedback for control design to assist a weak person’s
lower-limb motion or improve the accuracy of human-
machine interface [15]. However, performance of EMG
sensors is suspectable to measurement noises, placement of
electrodes, and sweating [8]. Energy shaping methods [16],
[17] enable exoskeletons to provide task-invariant assistance
by reducing the user’s perceived body weight. Similarly, Lin
et al. proposed a velocity-dependent energetic control method
to provide task-invariant assistance by altering the closed-
loop Hamiltonian [18]. While these approaches demonstrate
promising results, solving the matching condition for high-
dimensional underactuated systems is very difficult, especially
with varying degrees of underactuation during different phases
of gait. Thomas et al. proposed an energy shaping method to
amplify human strength by virtually attaching a leg floating to
the side of the true leg and obtaining the energy amplification
ratio by changing the mass of the virtual leg [19]. While this
control approach does not require the solving of matching
conditions, it requires predefined joint positions of the virtual
leg and thus may constrain the human user’s movements.

An important metric used in bipedal locomotion control
and evaluation is the centroidal momentum (CM), which is
defined as the sum of projected segmental momenta onto the
biped’s center of mass (CoM) [20]. As a fixed dimensional,
velocity-based vector, CM has been widely applied in
locomotion associated design problems. For example, it can
be used as an index for evaluating human walking stability
with exoskeletons [21] and predicting human balance [22].
Similarly, horizontal and vertical momenta at the user’s CoM
can be used for trajectory planning in assisting sit-to-stand
motion [23]. In addition, CM can be used for controlling
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walking patterns of humanoid or quadrupeds. Koolen et al.
proposed a momentum-based control approach for humanoid
robots to realize robust walking gaits [24]. Liu et al. used pre-
planned future foot positions to calculate the desired CM for
realizing quadrupedal trotting gaits [25]. The fact that the CM
is a fixed-dimensional vector in 3D space regardless of biped
models and the associated walking gaits brings several benefits
for control design. As long as the number of exoskeleton
actuators exceeds the CM’s dimension, we can guarantee the
existence of a control law to alter CM’s direction or magnitude
even if the system is underactuated. Control allocation (i.e.,
achieving a desired CM with specific actuators) can also
be achieved, which is usually feasible when the system is
overactuated [26]. Finally, altering the CM via exoskeleton
actuators does not require knowledge of predefined reference
trajectories, which may promote flexibility in control design
and facilitate friendly human-exoskeleton interaction.

In this paper, we propose a task-invariant CM shaping
framework for lower-limb exoskeletons. The shaping law
is yielded through tracking the desired CM of a virtual
reference model, whose joint positions and velocities are
based on the human user’s self-selected gaits. The inertial
parameters of this model can be chosen as a scaled version
of the human user’s real mass and inertia, which will lead to
a desired CM that has smaller or larger magnitudes. Through
tracking this CM, we can mimic the behaviors of the virtual
reference model via exoskeleton actuators to reduce/increase
the perceived weight of the human user (see Fig. 1). Since
the desired CM is generated based on each individual’s self-
selected gaits instead of predefined trajectories, and definition
of CM does not restrict individual limb momentum, the
proposed shaping framework is task-invariant. Instead of
treating human torque inputs as noises, we use a nonlinear
disturbance observer (NDO) to estimate volitional human
joint torques and include them in the overall CM shaping
design.

!!

!"

!#

!$
!#

!"!!

"!" "!"

"!#

"!#

"!$

"!!

"!!

#

ℎ'()

ℎ'(*
ℎ'+,

ℎ'(-.!,)

ℎ'(-.!,*ℎ'+-.!,,

$%& $%&

Fig. 1. Concept of shaping a human’s CM (hG, left) into a reference CM
(href

G , right) that has smaller magnitude via exoskeleton actuators. Subscripts
l and a indicate the linear and angular components of the CM, respectively.
This is a conceptual illustration, the actual CoM would be closer to the hip.

The rest of the paper is organized as follows: we begin
in Sec. II by introducing the dynamics of the biped. In
Sec. III, we define the reference CM based on the virtual
reference model and derive the task-invariant CM shaping
law. Simulation results and stability analysis using Poincaré
sections are provided in Sec. IV. Finally, we draw conclusions
and discuss possible future research directions in Sec. V.

II. DYNAMICS OF THE BIPED

Since human walking is primarily a sagittal-plane task
[27], in this paper we assume the biped is ambulating in the
sagittal plane and the inertial reference frame is defined at
its heel or toe. Modeling the biped as a human wearing an
exoskeleton, its Euler-Lagrange dynamics can be expressed
as [28]

Mq̈+Cq̇+N +AT
λ = τ, (1)

where M ∈ Rn×n is the inertia matrix, C ∈ Rn×n is the
Coriolis/centrifugal matrix, N ∈Rn×1 denotes the gravitational
forces, and n is the number of degrees of freedom (DoFs).
Note that all the masses and inertia in these matrices are
combinations of the human and exoskeleton parameters. The
configuration vector is given as q= (x,y,φ ,qT

s )
T ∈R2×Tn−2,

where x and y denote the Cartesian coordinates of the contact
point, φ is the absolute angle defined with respect to the
vertical axis, and qs ∈ Tn−3 is a vector composed of relative
joint angles. Additionally, τ = τhum +Bu denotes the sum of
human joint torque vector τhum and the exoskeleton input Bu,
where B = (0p×n−p, Ip×p)

T ∈ Rn×p is the matrix that maps
the exoskeleton torque u ∈ Rp into the overall dynamics.

During a step, the biped’s stance leg is always in contact
with the ground. We can thus define proper holonomic contact
constraints and map them into the overall dynamics via the
constraint matrix A [28]. The term λ = λ̂ + λ̌ τ in (1) denotes
the ground reaction forces, which can be calculated using the
method in [29]. Similar to [30], we assume the biped only
has instantaneous double-support phase.

III. CENTROIDAL MOMENTUM SHAPING

While assisting the movement of individuals who have
partial or full volitional control of their lower limbs, control
strategies should be designed based on the individual’s current
motion and avoid relying on predefined trajectories. In this
section, we propose a CM shaping strategy by leveraging
the advantage of an autonomous reference model which has
the same configuration as the human-exoskeleton model, but
consists of a scaled version of human inertial parameters. The
CM shaping law is yielded through tracking the desired CM
generated by the reference model (see Fig. 2 for the overall
structure of the control system).

A. Centroidal Momentum of the Biped

For any kinematic chain in 3D space, CM is always a vector
in R6 [20]. The CM of a single-link robot can be expressed
as hG = IGV ∈ R6, where IG = diag{m,m,m, I, I, I} is the
inertia tensor with mass m and inertia I, and V = [vT ,ωT ]T ∈
R6 is the velocity vector with linear velocity v ∈ R3 and
angular velocity ω ∈ R3. To generalize this concept to a
biped, which is a multi-link kinematic chain, we need to
acquire the velocities of all links and project them onto
the biped’s CoM. The velocity vector of a biped vG, which
consists of velocities defined with respect to each link’s body
frame, is expressed as

vG = JGq̇, JG = [JT
1 ,J

T
2 , · · · ,JT

j ]
T , (2)
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q, ·q M̃−1 ̂τhumHuman Human-Exoskeleton
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Fig. 2. Overall control diagram of CM shaping. The acronym NDO indicates “Nonlinear Disturbance Observer”, which is used to estimate a modified
form of human joint torques and will be specified in Sec. III-C.

where JG ∈ R6j×n is the system Jacobian matrix composed
of body Jacobian matrices Ji ∈ R6×n, i ∈ {1,2, · · · , j} for
all j links [28]. It follows that the body momentum vector
hbody ∈ R6j is given as

hbody = IGvG, IG = diag[IG1, IG2, · · · , IG j], (3)

where IG ∈R6j×6j is the multi-link version inertia tensor com-
posed of inertia tensor matrices IGi ∈R6×6, i ∈ {1,2,3, · · · , j}.
Since we place body frames at the CoM of each link, IGi
takes the form IGi = diag[mi · I3×3, Ii · I3×3] with mi and Ii
being the mass and moment of inertia of link i, respectively.
Finally, hbody is projected onto the biped’s CoM to obtain
the CM hG ∈ R6 as

hG = XT
G hbody, (4)

where XG ∈R6j×6 is the system adjoint transformation matrix.
Summarizing (2) to (4), the CM of a multi-link biped can be
expressed as

hG = XT
G IGJGq̇ := AGq̇ ∈ R6, (5)

where AG = XT
G IGJG ∈ R6×n is the centroidal momentum

matrix.
Remark 1: By observing (5), hG consists of two three-

element parts, i.e., linear and angular momentum, respectively.
With the assumption that the biped ambulates in the sagittal
plane, the linear momentum along the z-axis and the angular
momentum about the x− and y-axes are zeros. As a result,
only three rows in AG are non-zero. Also, hG is differentiable
during each phase of a gait cycle [24], where ḣG =AGq̈+ ȦGq̇.

B. Control Design

At this point, we are ready to derive the control law
for shaping the CM. It is worth noting that our proposed
control law is designed by tracking the desired CM of the
reference model with desirable inertial parameters, whose
angular information is extracted from the user’s own preferred
gaits, therefore is adaptable across locomotor tasks.

In order to design the shaping law, we will first need to
define the reference CM href

G and its derivative ḣref
G . In this

paper, we are particularly interested in the form

ḣref
G = ḣG −Kp(href

G −hG), (6)

where Kp ∈ R6×6 is a positive definite diagonal matrix. We
proposed this relationship for href

G and ḣref
G hoping that ḣG

will track ḣref
G while the difference between hG and hre f

G can
be minimized via control actions. The reason that we prefer
tracking the changing rate of href

G rather than itself is that it
will be generated only after the human starts walking. Similar
to following a target vehicle with varying speeds, we hope
to achieve the same velocity for the follower vehicle rather
than a desired position over time.

Based on (5) and Remark 1, the reference CM and its
derivative can thus be written as

href
G = Aref

G q̇, ḣref
G = Ȧref

G q̇+Aref
G q̈virtual, (7)

where q̈virtual can be obtained from the desired dynamics of
the virtual reference model

M̃q̈virtual +C̃q̇+ Ñ +AT
λ̃ = τhum. (8)

In (8), τhum is the same human input vector as in (1), where
its estimation method will be introduced in Sec. III-C. The
matrices M̃, C̃, Ñ, and λ̃ in (8) are defined similarly to
the ones in (1) but with scaled inertial parameters, i.e.,
mref

i = kimi, and Iref
i = kiIi, where ki > 0 is the scaling

factor. Intuitively, ki > 1 is denoted as resistive mode as
the desired CM is defined with larger inertial parameters. On
the contrary, ki < 1 is denoted as assistive mode. Note that
these reference matrices can have forms other than the ones
with scaled inertial parameters, where alternative definitions
will be investigated in future work.

Equating ḣG in (6) with AGq̈ + ȦGq̇ and plugging the
expressions of hG, href

G and ḣref
G from (5) and (7), we can

obtain

AGq̈ = Ȧref
G q̇+Aref

G q̈virtual − ȦGq̇+Kp(Aref
G q̇−AGq̇). (9)

Substituting q̈ from (1) and plugging it into (9), we can obtain

AGM−1Bλ u =−AGM−1(−Cq̇−N −AT
λ̂ + τ̃hum) (10)

− ȦGq̇+ Ȧref
G q̇+Aref

G q̈virtual +Kp(Aref
G q̇−AGq̇),

where Bλ = B−AT λ̌ and τ̃hum = (I −AT λ̌ )τhum.
From Remark 1, AG contains only three non-zero rows,

therefore (10) can be reduced to three equivalent equations. If
the number of exoskeleton actuators is more than three, then
there exist infinite solutions to the control law u. We apply
an optimization procedure with constraints to determine u as

Min
u

uTWu (11)

s.t. AGM−1Bλ u = AGM−1(Cq̇+N +AT
λ̂ − τ̃hum)
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− ȦGq̇+ ḣref
G +Kp(Aref

G q̇−AGq̇), (12)
umin ≤ ||u||2 ≤ umax,

where W ∈ Rp×p is a diagonal, semi-positive definite weight
matrix, umin, umax ∈R are the lower and upper bounds of the
control torques, respectively. The objective function is chosen
as uTWu to minimize the torques exerted by the exoskeleton
actuators, which could possibly lead to an energy efficient
solution. Additionally, the weight matrix W can be adjusted
to achieve control allocation depending on specific assistive
or resistive goals.

C. Nonlinear Disturbance Observer for Human Inputs

The proposed optimization procedure requires the knowl-
edge of human input term τhum, which can be difficult to
measure in practice. To overcome this issue, a nonlinear NDO
can be applied to estimate human torques [31]. In this paper,
we modify an existing NDO [31] so that it can estimate the
modified form of human input M−1τ̃hum in (12) using joint
parameters.

Multiplying M−1 from the left for (1), we can obtain

q̈+M−1(Cq̇+N +AT
λ̂ ) = M−1Bλ u+ z, (13)

where z = M−1τ̃hum denotes the “disturbance” to be observed.
Re-writing (13) as

z = q̈+M−1Cq̇+M−1N +M−1AT
λ̂ −M−1Bλ u (14)

and denoting the estimate of z as ẑ, we can obtain [32]:

˙̂z = L(z− ẑ),

=−Lẑ+L[q̈+M−1(Cq̇+N +AT
λ̂ )−M−1Bλ u] (15)

where L ∈Rn×n can be selected as a positive definite diagonal
matrix so that the estimation error e = z− ẑ is governed by

ė = ż− ˙̂z = ż−Le. (16)

If ż is bounded, i.e., ||ż||2 ≤ β for some positive β ∈ R,
then the estimation error e is uniformly ultimately bounded
by 2βλmax(P)/(θλmax(Q)) [31], [32], where θ ∈ (0,1), P
and Q are the associated positive definite matrices from the
Lyapunov equation PL+LT P = Q, and λmax(·) denotes the
maximum eigenvalue of a matrix [32]. From [33], [34], we
know that both τhum and M are bounded. In addition, we can
numerically verify Ṁ−1 is also bounded based on the biped
model, therefore ||ż||2 is bounded.

IV. SIMULATIONS AND RESULTS

In this section, we demonstrate potential benefits of the
proposed CM shaping on human walking via simulations on
an 8-DoF human-like biped.

A. Simulation Model and Hybrid Dynamics

The biped model we used for simulation is shown in
Fig. 3, where its dynamics are in the form of (1). We
lumped the human and the exoskeleton together to model the
biped and assumed the biped’s hip groups the human’s torso
and upper body masses. The biped’s configuration vector
is given as q = {x,y,φ ,θa,θk,θh,θsk,θsa} ∈ R2 ×T6, where

θi, i ∈ {a,k,h,sk,sa} is the relative angle of ankle, knee,
hip, swing knee, and swing ankle joints, respectively. Each
of these joints is actuated by an exoskeleton actuator, i.e.,
u = {ua,uk,uh,usk,usa} ∈R5. Similarly, we define the human
input vector as τhum = Bv with v = {va,vk,vh,vsk,vsa} ∈ R5.
Each human joint torque is approximated by using a PD
controller [29], i.e., vi =−Kv

pi(qi− q̄i)−Kv
diq̇i, where Kv

pi and
Kv

di are semi-positive definite proportional and derivative gain
matrices, and q̄i is the equilibrium position of joint i. We
first tuned the PD gains and the equilibrium positions by
trial and error to find a stable passive gait walking down a
shallow slope, and then implemented the shaping law u for
simulations. All simulation parameters can be found in Table
II of [29].
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Fig. 3. Kinematic model of the human wearing an exoskeleton. The solid
and dashed lines denote the stance and the swing leg, respectively. This
figure is produced from [16].

Within a step, the biped goes through both the stance
and swing phases, where the stance phase can be further
divided into three contact phases: heel contact, flat foot, and
toe contact. For each contact phase, we can define proper
holonomic contact constraints and obtain a constant constraint
matrix A = [Ic×c,0c×(n−c)], where c represents the number
of contact constraints. Transitions among these phases are
modeled as discontinuous events, either an impact event or
a change of coordinates, which leads to a hybrid dynamical
system similar to the one in [35]. During simulation, we
selected the reference model to have identical geometric
shape as the human-exoskeleton model (i.e., Fig. 3) but with
scaled inertial parameters to generate the reference CM.

B. Estimated Metabolic Cost Metrics

In order to verify if the proposed shaping strategy can
reduce energy expenditure during walking, we compared
the metabolic cost between passive gaits (i.e., u = 0) and
assisted/resisted walking with different combinations of Kp
and ki using two simulation-based metabolic cost metrics,
where the first one [36] is expressed as

Ewalking1 =

∫ T
0 τ2

hum dt
T (mgl)2 ≈ ∑

NT
i=1 τ2

hum(i)∆t(i)
T (mgl)2 . (17)

In (17), T is the step duration, NT is the number of timesteps
during one step, m is the total mass of the biped, l is the

2057

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on February 19,2024 at 19:43:31 UTC from IEEE Xplore.  Restrictions apply. 



leg length, and ∆t(i) is the i-th timestep. Note that Ewalking1
is a unitless index. The second metric that we used can be
expressed as [37]

Ewalking2 = (E3LP +ECR +EGC)/η +EWS, (18)

E3LP =
∫ T

0
[

d
dt
(

1
2

q̇T Mq̇)]+ dt,

ECR =
1
2

Mv2
z , EGC = 2mleg∆hlg,

EWS =
∫ T

0
mleggcosβslt sin

θk

2
θ̇kmaxΦ(

θ̇k

θ̇kmax
)dt,

where E3LP is the swing and torso balance cost of the three-
link (stance, swing leg, and torso) linear pendulum model,
ECR is the CoM redirection cost, EGC denotes the ground
clearance cost, and EWS represents the weight support cost.
Detailed definitions for all terms in (18) can be found in [37].

C. Results and Discussion

During simulation, we fixed the weight matrix W to be
an identity matrix I5×5 and selected different combinations
of Kp and ki to study their effects on walking. In particular,
we chose the same value for all diagonal elements for Kp.
Note that the passive biped model is sensitive to system
parameters when walking down the slope, which could fall
over with Kp and/or ki that are too small or too large. We
therefore first varied these parameters to find their stable
ranges as ki ∈ (0.85, 1.05) and Kpi ∈ (10, 20). Humans will
have better capacity to maintain balance and control of their
bodies during walking compared to the passive biped, which
could allow for a wider range for ki and Kp.

We first examined the CM trajectories for different Kp and
ki combinations, where Fig. 4 shows the linear CM of the
human-exoskeleton model along x-axis with three pairs of
ki and Kp = 10 · I6×6 during 10 steps. CM along other axes
are similar and have much smaller magnitudes, therefore are
not demonstrated. In Fig. 4 we can see that modifying ki
results in noticeable changes in the magnitude of CM, while
its general shape is preserved to passive walking, i.e., the
proposed shaping law does not drastically interfere with the
biped’s walking pattern. All three CM curves converge within
8 steps.

Fig. 5 compares the reference CM and linear CM of the
human-exoskeleton model along x-axis during one steady
step with ki = 1.05 and Kp = 10 · I6×6. From this figure, we
can see that both CM curves have similar shapes and there
exists a steady error in between. This is due to the inertial
parameter differences between AG and Aref

G , which also causes
the initial value difference in href

G and hG at the beginning of a
step. Having a steady error could consistently enable tracking
action for the human-exoskeleton model. Additionally, Table
I shows that assistive modes (ki < 1)/resistive modes (ki >
1) result in smaller/larger linear step velocities, which is
reasonable since the reference CM that the human-exoskeleton
model tracks is defined based on reduced/increased inertial
parameters.

Metabolic costs using metrics (17) and (18) with different
combinations of Kp and ki are shown in Fig. 6, where the
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Fig. 4. Linear component of the biped’s CM along the x-axis with different
values of ki and Kp = 10 · I6×6. The blue (ki = 0.95), red (ki = 1), and green
(ki = 1.05) curves indicate assistive, passive, and resistive modes.
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Fig. 5. Comparison of human-exoskeleton and reference model’s linear
CM along x-axis with ki = 1.05 and Kp = 10 · I6×6 over one steady step.

TABLE I
LINEAR STEP VELOCITY WITH Kp = 10 · I6×6 & DIFFERENT VALUES OF ki

ki Linear Step Velocity (m · s−1)
0.9 0.8332
0.95 0.9283

1 1.0113
1.03 1.0661
1.05 1.1172

black dotted line (ki = 1) indicates the cost of the passive
gait across different values of Kp. For a fixed Kp, the
estimated metabolic cost increases almost proportionally with
ki. This result concurs with the expectation that increasing
inertial parameters will result in more energy expenditure
as the reference model represents a heavier person. The
opposite conclusion can be drawn for the assistive case, i.e.,
reduced inertial parameters results in less energy expenditure
during walking. Furthermore, for each given ki, increasing
Kp shows a trend of intensifying the performance of the
proposed shaping strategy, i.e., a larger value of Kp yields
more metabolic cost reduction (assistive mode) or increment
(resistive mode). This is rational since a larger value of
Kp generates a greater difference hG − href

G in (6), which
consequently leads to greater tracking action. Based on the
biped model used in the paper, we can increase/decrease the
metabolic cost by 18% and 36%, respectively, after which
there is excessive/insufficient energy for the biped to maintain
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a stable walking gait.

10 12 14 16 18 20

Kp (  I
6  6

)

6

8

10

12

14

M
et

ab
ol

ic
 C

os
t

10 12 14 16 18 20

Kp (  I
6  6

)

8

10

12

14

16

18

20

M
et

ab
ol

ic
 C

os
t (

J)

k
i
=0.92

k
i
=0.94

k
i
=0.95

k
i
=0.98

k
i
=1

k
i
=1.02

k
i
=1.03

Fig. 6. Metabolic cost with different combinations of Kp and ki using
metrics (17) (left) and (18) (right).

The exoskeleton’s torques during one steady step are
shown in Fig. 7, which are bounded and smooth except
during transitions. Discontinuities in the torques are due
to the sudden changes in joint velocities during impacts.
Also, the directions (extension/flexion) of the hip and knee
torques roughly align with human joint torques [38], which
is beneficial for human walking. Since we solved the shaping
law in a lower-dimensional space, the result to (11) will
guarantee the biped to track the desired CM, while the joint
level-torques were left to be unspecified. This may be the
cause for the misalignment between the exoskeleton stance
knee torque and human knee torque during 0s to 0.1s. Possible
ways to specify the joint-level torque would be adjusting the
weight matrix W in (11) and incorporating constraints on
specific actuators.
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Fig. 7. Exoskeleton torques with ki = 0.95 and Kp = 10 · I6×6 during one
steady step.

The NDO is mainly designed for estimating human joint
torques in experiments, while in simulation we can obtain
τhum directly from the simulator instead of using the NDO.
The estimation performance of the proposed NDO during
passive walking is shown in Fig. 8, where we chose L with
identical diagonal elements. We can see that for all choices
of L, the 2-norm of the error term ||e||2 converges relatively
fast and remains bounded after a short period of time. Note
that if the L is chosen large enough, e.g., L = 106 · I8×8, the
error in the figure could be sufficiently small (less than 0.05)
for estimating human inputs. The large initial estimation error
in Fig. 8 is closely related to the initial value of ẑ. We can
mitigate this error by taking advantage of nominal human
torque values from previous studies [38].
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Fig. 8. Estimation error ||e||2 for M−1τhum with different options of L.

D. Hybrid Stability

In this paper, biped locomotion is modeled as a dynamical
system that includes continuous and discrete dynamics. Due
to the difficulty of analytically proving the stability for
high-dimensional hybrid systems in general, we verified the
system’s stability numerically using Poincaré sections method
[30]. Let x=(qT , q̇T )T denote the state vector of the biped, the
transition from one step to the successive step can be modeled
as a Poincaré map P : S → S, where S is the switching
surface indicating initial heel contact. For a periodic orbit, its
intersection with the switching surface is a fixed point x∗. The
periodic orbit in the hybrid system is locally exponentially
stable if the eigenvalues of the linearized Jacobian ∇xP(x∗)
lie within the unit circle [30]. During simulation, we allowed
the biped to converge to a fixed point with a specific set
of shaping parameters and then numerically calculated the
Jacobian eigenvalues using the perturbation analysis in [29].
Table II shows the maximum absolute eigenvalues of the
linearized Poincaré map with different combinations of Kp
and ki. For most combinations in Table II, the hybrid system
is stable. We will further investigate the relationship between
shaping parameters and system stability in future work.

TABLE II
MAXIMUM EIGENVALUES OF THE LINEARIZED POINCARÉ MAP

Kp

ki 10 11 12 13 14 15 16

0.9 0.52 0.59 0.68 0.84 1.47 4.64 18.70
0.93 0.39 0.41 0.45 0.49 0.54 0.59 0.64
0.96 0.44 0.43 0.42 0.41 0.40 0.40 0.39
0.99 0.49 0.48 0.48 0.48 0.48 0.47 0.47
1.02 0.58 0.59 0.61 0.62 0.63 0.64 0.65

V. CONCLUSIONS

In this paper, we proposed a task-invariant shaping frame-
work for lower-limb exoskeletons to assist/resist human users
by altering the magnitude of their CM. The framework
achieved the task-invariant objective by tracking a desired
CM generated by a virtual reference model based on each
individual’s self-selected gaits. The fixed dimension of the
CM vector guarantees the existence of a shaping law if the
exoskeleton has at least three actuators. We incorporated
an NDO to estimate human joint torques and applied an
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optimization procedure to determine the shaping law with
minimal control actions. Simulation results on a human-like
biped demonstrated that the proposed strategy successfully
altered the biped’s CM and reduced (assistive mode) or
increased (resistive mode) the estimated metabolic costs
with different combinations of shaping parameters. Future
work includes human subject experiments, alternative ways to
define the desired CM, and customizing shaping parameters
for optimal performance.
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