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Decentralized Passivity-Based
Control With a Generalized
Energy Storage Function for
Robust Biped Locomotion
This paper details a decentralized passivity-based control (PBC) to improve the robust-
ness of biped locomotion in the presence of gait-generating external torques and para-
metric errors in the biped model. Previous work demonstrated a passive output for biped
systems based on a generalized energy that, when directly used for feedback control,
increases the basin of attraction and convergence rate of the biped to a stable limit cycle.
This paper extends the concept with a theoretical framework to address both uncertainty
in the biped model and a lack of sensing hardware, by allowing the designer to neglect
arbitrary states and parameters in the system. This framework also allows the control to
be implemented on wearable devices, such as a lower limb exoskeleton or powered pros-
thesis, without needing a model of the user’s dynamics. Simulations on a six-link biped
model demonstrate that the proposed control scheme increases the convergence rate of
the biped to a walking gait and improves the robustness to perturbations and to changes
in ground slope. [DOI: 10.1115/1.4043801]

1 Introduction

Autonomous biped control is an application defined by a num-
ber of challenges including nonlinear dynamics, hybrid dynamics,
and underactuation. One of the classic goals of control design for
these systems is to drive the joint torques of the biped to perform
some repetitive locomotion task, like walking or running, which
can be modeled with a nonlinear stability concept called a limit
cycle (i.e., a periodic orbit in the state space of the system) [1].
This limit cycle experiences discrete jumps in velocity due to
hybrid dynamics that model the plastic impacts of the biped with
the ground. Underactuation restricts the ability to arbitrarily con-
trol the dynamics of the biped to generate a desired limit cycle
[2]. It is possible to embrace this property and design controllers,
which stabilize desired trajectories based on hybrid zero dynam-
ics, as in Ref. [3]. This methodology has been implemented on a
wide range of systems, as demonstrated in Refs. [4] and [5]. How-
ever, these trajectories are designed for specific tasks and with
specific optimization criteria. Trajectory-free control methods are
of interest for a more task-invariant approach.

A particularly well-known phenomenon in biped locomotion is
that of passive dynamic walking, as first reported by McGeer [6],
where an uncontrolled biped is able to walk down a shallow slope
under the power of gravity. In other words, a stable limit cycle
can naturally emerge from the interaction of the biped with the
environment. The basin of attraction of the natural limit cycle is
quite small, meaning that it will only converge to the walking gait
from a small set of states. The limit cycle can be characterized by
the equilibrium between the simultaneous decrease of kinetic
energy and increase of potential energy at impact, which causes
the mechanical energy of the system to be conserved along the
limit cycle. Goswami et al. were the first to exploit these natural
dynamics and use passivity-based control (PBC) to drive the
biped’s energy to this conserved value, in order to enlarge the

basin of attraction of the limit cycle in a trajectory free manner
[1]. A PBC is a control law that exploits an input–output relation-
ship that bounds the rate of change of an energy-like storage func-
tion in the system, and is complimentary related to the idea of
passive walking.

Others have built on these ideas and demonstrated more
sophisticated examples of energy-based control for biped locomo-
tion [7]. Methodologies such as energy shaping [8–12], intercon-
nection and damping assignment-PBC [13], and the rapidly
exponentially stabilizing control Lyapunov function [14] have
also utilized these connections between energy and limit cycles to
create stable walking gaits. However, these methods have their
limitations. Energy shaping and interconnection and damping
assignment-PBC rely on the system meeting a matching criterion
that restricts the degree of underactuation allowed and generally
requires an inversion of the system mass matrix, which can be
sensitive to error in the model parameters. The energy tracking
PBC methods in Refs. [1] and [7] require a conserved mechanical
energy, which is impractical for a real system. The rapidly expo-
nentially stabilizing control Lyapunov function method [15] does
not have a demonstrated passivity property to date, which can
limit its performance in uncertain environments (i.e., unknown
terrains or human–robot interactions). Recently, concepts from
Ref. [15] were leveraged to generalize the energy tracking method
of Ref. [7] to bipeds with pre-existing control inputs that do work
(e.g., human locomotion), while also allowing arbitrary underac-
tuation in the PBC [16]. However, this control approach required
full knowledge of the state variables and model parameters, which
presents significant implementation challenges.

This paper addresses this gap by developing a new decentral-
ized formulation that provides a theoretical framework to address
both uncertainty in the biped model and a lack of sensing, by
allowing the designer to ignore arbitrary states and model parame-
ters in the system. A decentralized control scheme, in general, uti-
lizes multiple subcontrollers working in concert to achieve a task
[17]. Each controller only has access to a subset of the state and
model information (termed “local” information). This scheme is
desirable in the control of biped locomotion for a number of rea-
sons. It can allow for a reduction of sensing components in the

1Corresponding author.
Contributed by the Dynamic Systems Division of ASME for publication in the

JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
September 9, 2018; final manuscript received May 14, 2019; published online June
13, 2019. Assoc. Editor: Inna Sharf.

Journal of Dynamic Systems, Measurement, and Control OCTOBER 2019, Vol. 141 / 101007-1
Copyright VC 2019 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/141/10/101007/6415980/ds_141_10_101007.pdf by C

lem
son U

niversity user on 19 February 2024

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4043801&domain=pdf&date_stamp=2019-06-13


hardware, compensate for uncertainties in the dynamic model of
the biped, and reduce the computational complexity of the control
[18,19]. It is of critical concern when considering the potential
application to wearable devices (e.g., a powered prosthesis or
lower limb exoskeleton) where a user guides and generates their
own limit cycle, but a high fidelity model for their dynamics
cannot be obtained [20]. The decentralized PBC retains useful
qualities of the centralized approach, such as arbitrary underactua-
tion, synergy with inner loop controllers, and improved robustness
and convergence rate of the limit cycle.

The format of the paper is as follows: Sec. 2 introduces the
hybrid dynamic model of a six-link biped and a proportional-
derivative (PD) controller that generates a walking gait for the
biped. Section 3 offers a brief review of passivity and derives a
centralized PBC from an energy-based storage function. Numeri-
cal simulations of this control applied to the biped model are
given. Section 4 extends the PBC with a decentralized formulation
that bases the construction of the storage function on a Lagrangian
subsystem; then comparisons between the simulations of the cen-
tralized and decentralized PBCs are made. Section 5 offers a mod-
ification of the PBCs that has an adaptive reference energy.
Section 6 discusses issues of implementation on a physical system
and offers a potential method of achieving this. Section 7 contains
concluding remarks and ideas for future work.

Notation: Given two matrices a and b of suitable dimensions,
the matrix ½a>; b>�> where > denotes the transpose operator is
denoted by [a; b].

2 Modeling and Dynamics

In this paper, we use the model given in Ref. [21] and offer a
brief review of it in this section. For simplicity, the link between
the two hip joints is modeled as a single joint and there is no torso
link. Thus, together with a foot, shank, and thigh link for each leg,
the model is a six-link biped. The biped is modeled as a planar
kinematic chain with respect to an inertial reference frame defined
at either the stance heel or stance toe, depending on the phase of
the single-support period (to be discussed in Sec. 2.2). A diagram
of the biped is shown in Fig. 1.

The generalized coordinates of the biped model are defined as

q ¼ ½px; py;/; ha; hk; hh; hsk; hsa�> 2 R8�1, where px and py repre-
sent the Cartesian position of the stance heel or stance toe in the

inertial reference frame, and / is the angle of the heel-to-ankle
vector with respect to the vertical axis. The subscript i 2
fa; k; h;sk; sag denotes the ankle, knee, hip, stance knee, and
stance ankle, respectively, and is used to describe the angles hi

between each link. The mass mj, length lj, and inertia Ij of the links
are indexed by the subscript j 2 ff; s; t; h; st; ss; sfg, which denotes
the stance foot, stance shank, stance thigh, hip, swing thigh, swing
shank, and swing foot, respectively.

2.1 Continuous Lagrangian Dynamics. The dynamics are
derived using the Lagrangian formulation [22] to obtain the
equation

MðqÞ€q þ Cðq; _qÞ _q þ NðqÞ þ AðqÞ>k ¼ s (1)

where MðqÞ 2 R8�8 is the inertia matrix, Cðq; _qÞ 2 R8�8 is the

Coriolis/centrifugal matrix, and NðqÞ 2 R8�1 is the gravity force

vector. The term AðqÞ>k models the interaction between the

biped’s foot and the ground, where the matrix AðqÞ 2 Rc�8 is
defined as the gradient of the constraint functions, and c is the
number of contact constraints that may change during different

contact conditions. The Lagrange multiplier k 2 Rc�1 is calcu-
lated using the method in Refs. [21] and [23] and satisfies the
assumption that the ground reaction forces do no work on the sys-

tem. The torque vector is s ¼ Buuþ Bvv, where Bu 2 R8�d and

Bv 2 R8�m map the PBC torques u and additional control torques
v (to be defined in Sec. 2.4) into the generalized coordinates,
respectively. The number of control inputs d and m do not need to
be the same.

2.2 Contact Constraints. Based on Refs. [24] and [25], the
single-support period can be broken down into three subphases:
heel contact, flat foot, and toe contact, where holonomic contact
constraints can be properly defined. Following the convention in
Ref. [21], we express the holonomic contact constraints of the
biped as relations between the position variables of the form

asubðq1; q2;…; qcÞ ¼ 0c�1 (2)

where qj denotes the jth element of the configuration vector q and
sub 2 fheel; flat; toeg indicates the contact phase. There are c¼ 2
constraints for heel contact and toe contact, whereas flat foot has
c¼ 3 constraints. The constraint matrix can then be defined for all
contact conditions as

Asub ¼
@a qð Þ
@q
¼ Ic�c 0c� 8�cð Þ
� �

(3)

This form can be achieved by defining the inertial reference frame
at the stance heel during heel contact and flat foot, and at the
stance toe during toe contact.

2.3 Hybrid Dynamics. Biped locomotion can be modeled as
a hybrid dynamical system, which includes continuous and dis-
crete dynamics [26]. The system follows a sequence of continuous
dynamics and their discrete transitions. It cycles through different
contact configurations defined in Sec. 2.2 during stance period
and encounters impacts when the swing heel hits the ground or
the flat foot slaps the ground. Following the same assumption in
Ref. [26], the discrete transitions model an instantaneous double-
support phase at heel strike and plastic impacts. The map from
pre-impact state to postimpact state is derived based on the
assumption that the impact impulsively constrains the contact
point to the ground, which can cause an instant change in the
velocity and thus the kinetic energy of the biped.

Based on the method in Ref. [21], the hybrid dynamic regimes
over one step are computed in the following sequence:

Fig. 1 Kinematic model of the biped. COP denotes the center
of pressure. The solid links denote the stance leg and the
dashed links denote the swing leg.
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Heel regime

(1) M€q þ Tðq; _qÞ þ A>heelk ¼ s if aflat 6¼ 0

(2) _qþ ¼ ðI � XðAflatXÞ�1AflatÞ _q� if aflat ¼ 0

Flat regime
(3) M€q þ Tðq; _qÞ þ A>flatk ¼ s if jcpðq; _qÞj < lf

(4) _qþ ¼ _q�; ðqð1Þþ; qð2ÞþÞ> ¼ G if jcpðq; _qÞj ¼ lf

Toe regime
(5) M€q þ Tðq; _qÞ þ A>toek ¼ s if hðqÞ 6¼ 0

(6) ðqþ; _qþÞ ¼ Rðq�; _q�Þ if hðqÞ ¼ 0

The vector T groups the Coriolis/centrifugal terms and potential
forces for brevity. The superscripts “–“ and “þ” indicate the pre-

impact and the postimpact values, respectively. The terms X ¼
M�1A>flat and G ¼ ðlf cosðcÞ; lf sinðcÞÞ> model the change in iner-
tial reference frame, cp is the location of the center of pressure, c
is the ground slope angle, and lf is the foot length. The ground
clearance of the swing heel is denoted by h(q), and R denotes the
swing heel ground-strike impact map derived based on Ref. [26].

2.4 Inner Loop Proportional-Derivative Control. Part of
the model from Ref. [21] is a set-point PD controller that gener-
ates a stable limit cycle while walking down a shallow slope. It
has the form

v ¼ �Kpðqm � �hÞ � Kd _qm (4)

Here, qm is the actuated coordinates vector, �h is the equilibrium
vector, and the diagonal control gain matrices are denoted as
Kp;Kd 2 R5�5. The mapping matrix Bv is constructed such that
the PD controller actuates the ankles, knees, and hip of the biped.
We term this PD controller v the “inner loop” and the to-be-
derived PBC u the “outer loop,” since the PBC derivation relies
on the existence a limit cycle.

3 Centralized Passivity-Based Control

The passive compass-gait biped has no external force input
during its continuous dynamics; thus, the only work done on the
system is by the discrete impacts with the ground. On a passive
limit cycle, the kinetic energy of the biped is essentially reset after
each impact, while the datum defining the potential energy is
shifted to reset the potential energy. This gives rise to a constant
system energy [1]. A similar phenomenon exists for an n-link
biped on a limit cycle generated by a controller v that does work.
During the continuous dynamics, the work done by the controller
exactly accounts for the change in the mechanical energy. If the
work is reset to zero after each impact (which we can enforce by
convention), this gives rise to a sequence of generalized system
energies that are conserved on the limit cycle [15]. We seek to uti-
lize this conservation to formulate a passivity-based control u that
increases the basin of attraction of the pre-existing limit cycle.

The concept of passivity is a powerful tool for analyzing the
stability of nonlinear systems and designing controllers for those
systems, and it is distinct from the way “passive” is used to
describe the compass gait walker. Passive in that context means
there is no actuation, while passivity is an input–output relation-
ship of dynamic systems. Historically, it has been used to show
that the change of energy in a system is bounded by a function of
the control input and establish stability proofs using arguments
similar to the method of Lyapunov [22]. The formal definition for
passivity is given as follows [27]:

DEFINITION 1. Let Sðq; _qÞ : R2n ! R be a continuously differen-
tiable, non-negative scalar function. A system is passive from

input u to output y with storage function Sðq; _qÞ if _Sðq; _qÞ � y>u.
The mechanical energy of a system often acts as the storage

function and the output is the vector of joint velocities [28]. How-
ever, a storage function does not have to be a quantity with a
direct physical interpretation. We use an energy-squared storage

function, which can be interpreted as the distance between a given
state vector and the desired energy state. The main idea behind
the control is to feedback the passive output as u ¼ �y to drive
this distance to zero, and thus drive the system to the limit cycle.
In the analysis, the arguments of dependent variables or functions
will sometimes be dropped for conciseness.

3.1 Centralized Derivation. As shown in Ref. [15], we can
define a generalized system energy as

Eðq; _q; v; tÞ ¼ Kðq; _qÞ þ PðqÞ �Wðq; _q; v; tÞ (5)

The mechanical energy of the system is the kinetic energy K plus
the potential energy P, while the work done by the inner loop con-
troller is

W ¼
ðt

0

_q>Bvv ds (6)

The work W accounts for the energy stored, added, and dissipated
over time t by the inner loop control torque v. Note that the exact
form of this control is left arbitrary. In the following analysis, the
important feature is that it generates a limit cycle for the biped.

Consider the following storage function from Ref. [29] for the
derivation of a passivity-based controller:

S q; _qð Þ ¼ 1

2
E� Erefð Þ2 (7)

where Eref is the constant reference energy defined on a given
limit cycle. Taking the time-derivative of S, we obtain

_S ¼ ðE� ErefÞð _E � _ErefÞ (8)

Since Eref is constant, _Eref ¼ 0 and all that remains is to calculate
_E. From Eqs. (5) and (1), the time-derivative is

_E ¼ d K þ Pð Þ
dt

� dW

dt
(9)

From the definition of W, the application of the fundamental theo-
rem of calculus, and the conservation of energy in a mechanical
system

_E ¼ ð _q>Buuþ _q>BvvÞ � _q>Bvv ¼ _q>Buu (10)

It follows that the time-derivative of the storage function
becomes:

_S ¼ ðE� ErefÞ _q>Buu (11)

with passive output

yðq; _q; v; tÞ> ¼ ðE� ErefÞ _q>Bu 2 R1�d (12)

Following the paradigm of passive output feedback, the PBC is:

uðq; _q; v; tÞ ¼ �kXy ¼ �kXðE� ErefÞB>u _q (13)

where k is a scalar gain and X is a diagonal, positive-definite
matrix that assigns relative weights to the outputs. As a conven-
tion, we limit the magnitude of the elements in X to be between 0
and 1.

3.2 Centralized Analysis. Our system is a hybrid system,
with multiple dynamic regimes and switching behaviors. Because
each regime has a conserved energy (Eheel;Eflat;Etoe), we can
define corresponding storage functions (Sheel; Sflat; Stoe) and con-
trol laws (uheel; uflat; utoe). All other parameters are identical
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between the controllers. The switching strategy is that when the
dynamics switch contact configuration, the control is correspond-
ingly switched. Our analysis applies to all of the continuous
regimes, so we drop the subscripts for generality.

The convergence behavior in the continuous dynamics can be
investigated by substituting the control law into the time-
derivative of the storage function to get

_S ¼ �ky>X y

¼ �ðE� ErefÞ2 _q>BukXB>u _q

¼ �2kSjj _qjj2X

(14)

where

jj _qjj2X ¼ _q>BuXB>u _q (15)

is the square of a weighted norm. If we make the assumption that

jj _qjj2X � g � 0, then

SðtÞ � Sð0Þe�2kgt (16)

which implies a minimum exponential convergence of the storage
function, as long as the bound g holds.

One of the beneficial properties of PBC is that it is easy and nat-
ural to extend these results to the case of actuator saturation. Con-
sider a saturated version of the control

u ¼ satð�kðE� ErefÞXB>u _qÞ (17)

This changes Eq. (14) to

_S ¼ �ky>X satðyÞ � 0 (18)

and the resulting system is still passive because the function out-
put preserves the sign of the input, similar to the results in
Ref. [30].

The main contribution of this derivation and analysis is to gen-
eralize similar results from Spong et al. [29] in two ways: to sys-
tems that already have a feedback controller (the inner loop here)
and to systems with an arbitrary degree of underactuation.

Remark 1. The derivation of the control based on a conserved
generalized system energy Eq. (5) gives a justification for why the
PBC should work in conjunction with a pre-existing feedback
controller. If the system is on the limit cycle, the energy is always
equal to the reference energy and the PBC is always zero. Thus,
the behavior of the system on the limit cycle is preserved in the
presence of the PBC. However, it is important to note that the con-
vergence of the system’s generalized energy to the reference
energy does not necessarily mean the biped is on the desired limit
cycle (i.e., the walking gait). LaSalle’s theorem in Ref. [29] only
guarantees local asymptotic stability of the walking trajectory in
the continuous dynamics. The condition _S � 0 can produce multi-
ple invariant sets that are locally asymptotically stable, including
both sets where E� Eref � 0 and sets where jj _qjj2X � 0. Further-
more, the form of these invariant sets is dependent on the biped
model and the inner-loop control inputs v. For example, a station-
ary biped could be one of these invariant sets because jj _qjj2X � 0.

Remark 2. The way the X-norm Eq. (15) enters into the storage
function relation Eq. (14) gives a justification for why the control-
ler should function with arbitrary underactuation. The fundamen-
tal relationship between the storage function and its derivative is
always the same regardless of degree of underactuation. The only
thing that changes is the bound g, which should increase with an
increase in the number of actuators. From Eq. (16), we can see
that this means more actuators cause an increase in the conver-
gence rate of the storage function. However, more actuators and
increased convergence speed are not always better. The basin of
attraction of the limit cycle is shaped by every parameter that

enters into the dynamics, in particular the choices of k, X, and Bu.
In Sec. 3.3.3, we demonstrate the importance of these parameter
choices in simulation and show that an increase in the number of
actuators can actually lead to a degradation of performance.

So far, we have not analyzed the passivity and stability of the
full hybrid system. There are several different notions of hybrid
passivity that guarantee stability [31,32]. These notions rely on
showing that the jump in storage caused by the discrete dynamics
is bounded by the product of the input and output in some manner.
This is somewhat difficult to show analytically for our biped sys-
tem, since an impact can increase the storage function by lowering
the energy below the reference energy. However, if the storage
decreases between periods of the same contact configuration (e.g.,
the second instance of the heel phase has less storage than the
first), then the hybrid dynamics converge to the reference
energies.

The behavior of the jumps depends on both the continuous and
discrete dynamics, and can be analyzed using the linearization of
the Poincar�e return map, Pðq; _qÞ, as in Ref. [3]. This map takes a

postjump point xL ¼ ½qþL ; _qþL � at the beginning of step L and maps
to the next postjump point at step Lþ 1

xLþ1 ¼ PðxLÞ (19)

If this map has a fixed point, then there exists an associated limit
cycle and conserved generalized system energy. For our multi-
phase hybrid system, one can use a single linear approximation of
the map to confirm the local stability of the entire system numeri-
cally [3]. We do this in the following simulation section.

3.3 Centralized Simulations. This section offers simulations
to exemplify how the centralized PBC affects the qualitative
behavior of the biped system and demonstrate the analysis meth-
ods we use to quantify performance. A nominal limit cycle was
found in Ref. [21] for a walking gait down on a slope of a¼ 0.095
radians. This limit cycle is used to determine the reference ener-
gies for the PBC. The exact parameters used in the biped model
and in the PD control are specified in Table 1, which are adopted
from Ref. [21] and are human inspired. The PBC is applied as an

Table 1 Model parameters

Parameter Variable Value

Hip mass mh 31.73 (kg)
Thigh mass mt, mst 9.457 (kg)
Shank mass ms, mss 4.053 (kg)
Foot mass mf, msf 1 (kg)
Thigh moment of inertia It, Ist 0.1995 (kg/m2)
Shank moment of inertia Is, Iss 0.0369 (kg/m2)

Full biped thigh length lt, lst 0.428 (m)
Full biped shank length ls, lss 0.428 (m)
Full biped heel length la, msa 0.07 (m)
Full biped foot length lf, lsf 0.2 (m)

Hip equilibrium angle �hh –0.5 (rad)
Hip proportional gain Kph 182.250 (N�m/rad)
Hip derivative gain Kdh 35.100 (N�m s/rad)
Swing knee equilibrium angle �hsk 0.2 (rad)
Swing knee proportional gain Kpsk 182.250 (N�m/rad)
Swing knee derivative gain Kdsk 18.900 (N�m s/rad)
Swing ankle equilibrium angle �hsa –0.25 (rad)
Swing ankle proportional gain Kpsa 182.250 (N�m/rad)
Swing ankle derivative gain Kdsa 0.810 (N�m s/rad)
Stance ankle equilibrium angle �ha 0.01 (rad)
Stance ankle proportional gain Kpa 546.750 (N�m/rad)
Stance ankle derivative gain Kda 21.278 (N�m s/rad)
Stance knee equilibrium angle �hk –0.05 (rad)
Stance knee proportional gain Kpk 546.750 (N�m/rad)
Stance knee derivative gain Kdk 21.278 (N�m s/rad)
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outer loop of the PD control (inner loop). Since px and py are
always constrained to the ground, the biped is fully actuated dur-
ing the flat foot phase and underactuated with degree one during
heel and toe contact due to /. The entries in the diagonal vector
for X that correspond to px, py, and / are always zero since they
are unactuated. The PBC is always saturated at 50 N�m, as a rea-
sonable limit of the physical capability of the actuators on an exo-
skeleton [12].

The PD controlled biped has three contact configurations,
which cause the nominal limit cycle to transition between three
different constant system energies, Eheel ! Eflat ! Etoe. This can
be seen in the periodic, constant jumps in Fig. 2, which shows the
trajectory for the generalized energy E ¼ K þ P�W versus time,
for three steps. The jumps are an artifact caused by the physical
decrease in kinetic energy due to an impact, the shift of the virtual
potential energy datum between different locations on the biped,
and the reset of the work integral between steps. The three distinct
energies Eheel; Eflat, and Etoe are used as the reference values for
the centralized PBC during the corresponding contact constraint.

3.3.1 Storage Convergence. When the system is solely under
the influence of the PD controller, the storage function S and sys-
tem energy E remain constant during the continuous dynamics,
and are only changed by the discrete dynamics (i.e., impacts).
Implementing the PBC on top of the PD controller qualitatively
changes the system behavior by forcing the storage function to

converge during the continuous dynamics as well. This is demon-
strated in Fig. 3, which gives the storage over time of the biped
system perturbed by Dxo ¼ ½08�1; 0:4 _qo�. Here, the control
parameters X ¼ ½0; 0; 0; 1; 1; 0:001; 1; 1�I8�8 and k¼ 1 were cho-
sen for simplicity and to respect the physical symmetry of the
biped. Similar to Fig. 2, the discrete jumps in the storage are
caused by the impact dynamics. The storage decreases between
periods of the same contact configuration (e.g., the second
instance of the heel phase has less storage than the first) with or
without PBC, which is important for the notion of hybrid passivity
from Ref. [31]. The convergence of the storage function during
the continuous dynamics appears to be exponential for the PBC
case, with different rates for each contact condition. This result is
expected based on Eq. (16). The effect of this behavior is that the
centralized PBC forces the storage close to zero in five steps,
which is much faster than the PD control alone. If we consider the
storage as a metric for how close the biped is to the nominal limit
cycle, then we can conclude that the PBC causes the biped to
reach steady-state walking faster. However, the storage only gives
an indication of convergence speed. It does not definitively dem-
onstrate stability of the hybrid limit cycle nor does it demonstrate
a notion of robustness; these ideas are discussed in Sec. 3.3.3.

3.3.2 Control Torques. The torques of PBC for the first three
steps of the simulation from Fig. 3 are given in Fig. 4. The specific
joint where the control torque ui acts is indicated by the subscript
i 2 fa; k; h; sk; sag. The figure indicates that the saturation effect
does significantly influence the torque profile, especially for the
stance ankle actuator. It is interesting to note that the torques for
the stance leg are generally larger than those for the swing leg;
this is because the velocities of the joints in the swing leg are
smaller in general. The torque trajectory in the first phase has an
exponential like trajectory for all the joints, which corresponds to
the exponential convergence of the energy to the reference since
the torque is proportional to this term. When the energy error
becomes small enough, the dynamics of the joint velocities begin
to have a larger influence on the control torques. Again, the jumps
in the control torque are caused by the instantaneous changes in
velocity and energy at impact.

3.3.3 Stability and Robustness. At the end of Sec. 3.2, we
stated that the stability of the limit cycle of the hybrid system can
be determined by calculating the eigenvalues of the linearized
Poincar�e map. If the eigenvalues K of the linearization lie within
the unit circle, then the limit cycle is locally exponentially stable
[3]. Figure 5 displays the largest magnitude of all the eigenvalues
as k is varied from 0 to 10 with X ¼ ½0; 0; 0; 1; 1; 0:001; 1; 1�I8�8.
This single value is displayed for clarity and conciseness because
the linearization has 16 eigenvalues. The figure indicates that the

Fig. 2 Generalized energy (E) of the PD controlled (inner-loop)
biped system while traversing the limit cycle. There are three
constant energy levels with discrete jumps between them.

Fig. 3 Centralized storage function for the perturbed system
with PBC and without PBC, over five steps. The transition
between steps is marked by a large decrease in storage, caused
by heel impact.

Fig. 4 Torque over time for the centralized controller U for the
first three steps
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system is stable for this range of gains since the value is always
less than one.

The linearization of the Poincar�e map can give some notion of
robustness, namely the margin from largest eigenvalue to the unit
circle (basically a gain margin). However, there is not a consensus
in the field of biped locomotion on what exactly “robustness”
means. Many researchers use the eigenvalues as described and say
that an increased margin indicates a more robust walking gait
[33,34]. This has drawbacks, namely that eigenvalues characterize
local stability and rate of convergence; they contain little informa-
tion about global properties of the nonlinear system like basin of
attraction or robustness. Furthermore, sensitivity to numerical
error can result in unstable eigenvalues for a stable orbit (an effect
we saw while working with these simulations). A more thorough
discussion of the robustness of walking bipeds exists in other
works [35,36]. Because of these issues, we turn to a modification
of this metric.

A metric called the “gait sensitivity norm,” with the notation
jj@g=@ejj2, was proposed in Ref. [36] to provide a measure of the
robustness of bipedal gait. It has been subsequently utilized in
several other works [37–39]. We use it to compare the effective-
ness of the different PBCs in our simulations by considering an
increase in 1=jj@g=@ejj2 as an increase in robustness. The calcula-
tion of this norm requires gait indicators, gait perturbations, and a
linearization of the Poincar�e return map. The indicators are essen-
tially failure modes of the system and the perturbations are char-
acteristic of actions on the system that cause failure. We regard
“failure” as the biped ceasing to walk. The gait indicators are
step length, step time, and the minimum ground clearance of the
swing leg heel over the duration of midstance. The disturbances
are a change of slope by 61 radian and a perturbation vector
Dxo ¼ ½08�1; 0:4 _qo� that introduces a scaled initial velocity at heel
strike. We calculate the Poincar�e return map [3] at heel strike after
three steps in our analysis. Based on our choice of indicators and
perturbations, we can interpret limit cycles with “better” gait sen-
sitivity norms as being robust to changes in ground slope and
velocity disturbances, in the sense that they are farther away from
the minimum “allowable” indicator values.

The nominal limit cycle of biped system under PD control
alone has a reciprocal norm of 1=jj@g=@ejj2 ¼ 0:1584. The biped
with the centralized PBC with the parameters used to generate
Fig. 3 has a reciprocal norm of 1=jj@g=@ejj2 ¼ 0:0248, which
indicates a less robust system. This might seem to indicate that
the PBC cannot achieve the goal of improving the robustness of
the biped. However, by simply changing the PBC parameters to
X ¼ ½0; 0; 0; 1; 1; 0:001; 1; 0�I8�8 (removing the PBC actuator at
the swing ankle and keeping everything else the same), we find an
increase in robustness with 1=jj@g=@ejj2 ¼ 0:6341. This demon-
strates that it is important to judiciously choose values in X. To
understand why such a dramatic change occurs, consider an edge

case when X ¼ ½0; 0; 0; 0; 0; 0; 0; 1�I8�8. Essentially, this causes
the swing foot to act as a reaction wheel pendulum in a similar
manner to Ref. [30]. Since the impact map is extremely sensitive
to the state of the swing foot at impact, this control parameter
choice contracts the basin of attraction of the desired limit cycle
dramatically. This causes the biped to fall over when the general-
ized energy is slightly perturbed.

4 Decentralized Passivity-Based Control

The controller in Sec. 3 relies on the ability to measure all iner-
tial and geometrical properties of the biped. It also relies on meas-
uring all the joint positions and velocities, inner loop torques, and
external forces applied to the system in order to continuously cal-
culate the generalized system energy. In the context of the appli-
cation to a powered prosthesis or exoskeleton, one generally has
an accurate model of the powered device and rough estimates of
the user’s mass distribution and geometry. The biggest challenge
relates to the inability to measure all of the user’s joint velocities
and torques. The straightforward approach might seem to be to
partition the system into user and device [20], and then use the
energy of the device to construct a PBC. However, we can
improve upon this with a partitioning scheme that utilizes all the
available model parameter and state information to construct a
PBC that is robust to parametric error.

4.1 Decentralized Derivation. The set of model parameters
H contains all of the mass, inertia, and link length parameters of
the biped given in Eq. (1). From this, the set of measured parame-
ters HO 	 H can be constructed to collect all of the model param-
eters that are available in the design of the PBC. Note that the
subset HO can also contain mass, inertia, and link length parame-

ters. Similarly, a vector of measured states xO ¼ ½qO; _qO� 2 R2b�1

can be extracted from the state vector x ¼ ½q; _q�, where the vectors

of measured position and velocity variables are qO 2 Rb�1 and

_qO 2 Rb�1, respectively. The number of joints with position and
velocity measurements is given by b.

Equipped with HO and xO, we can use them to find a subexpres-
sion in the Lagrangian of the mechanical system Lðx;HÞ ¼ K � P
that represents the measurable subsystem LOðxO;HOÞ such that

L ¼ LO þ L �O (20)

where L �O is an unmeasured or unmodeled part of the system
that cannot explicitly enter into the controller. To do this, we pro-
ceed by finding a subexpression KOðqO; _qO;HOÞ for the kinetic
energy and POðqO;HOÞ for the potential energy such that
LOðqO; _qO;HOÞ ¼ KO � PO.

The kinetic energy of the biped system is

K ¼ 1

2
_q>M q;Hð Þ _q (21)

The mass matrix M in the expression for K can be calculated using
the method from Ref. [23] as

M ¼
Xn

j¼1

J>j ðqÞMjJjðqÞ (22)

This method constructs the mass matrix link by link, where
Jj 2 R6�n andMj 2 R6�6 are the body Jacobian and generalized
inertia matrix of the jth link, respectively. The mass matrix can be
partitioned into

M ¼ WþMOðqO;HOÞ (23)

MO ¼
Xn

j¼1

J>jOMjOJjO (24)

Fig. 5 Maximum absolute value of the eigenvalues of the linea-
rization of the Poincar�e map as the gain k is varied from 0 to 10
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where MOðqO;HOÞ is a modified mass matrix that collects addi-
tive terms in M that are functions of the symbols in HO and xO,
exclusively. As it will be shown, MO is constructed by obtaining a
modified body Jacobian JjOðqO;HOÞ and a modified inertia matrix
MjOðHOÞ for each link through a partitioning scheme. The
remainders of the terms from this scheme are all collected in the
variable W, and we make no claims about its properties.

The matrix Mj is always positive definite by construction
because it has the form

Mj ¼ diagðmj;mj;mj; Ijxx; Ijyy; IjzzÞ (25)

which contains on the diagonal the mass and the inertias about the
principal axes of the link. It can be decomposed into

Mj ¼MjO þMj �O (26)

where MjO is a diagonal matrix that extracts all the symbols in
Mj that are also in HO. It is important to note that any MjO is
positive semidefinite as long as Mj contains at least one symbol
in HO. The remainder Mj �O is collected into W. Now, all that
remains is to partition the body Jacobian.

In general, each element ei;k in Jj has the form

ei;k ¼
Xn

z¼1

dz lz fzðqzÞ ¼
Xn

z¼1

Tz (27)

based on Ref. [23]. The coefficient dz takes values between zero
and one depending on where the center of mass of the jth link is
relative to the rest of the kinematic chain, while lz is an arbitrary
link length in H. The function fz depends on a vector of position
state variables qz, the exact form of which depends on the type of
joints (revolute or prismatic) that make up the kinematic chain.
We partition each element into

ei;k ¼ eOi;k þ e �Oi;k (28)

where eOi;k is the summation of the terms Tz where lz 2 HO and qz

is a symbol in xO. The term e �Oi;k is collected into the remainder
W.

The body Jacobian matrix can then be partitioned element-by-
element so that JjO is constructed from the eOi;k elements. Thus,
we have demonstrated the methods for constructing the JjO and
MjO terms in Eq. (24). As previously noted, eachMjO is positive
semidefinite, which implies MO is also positive semidefinite.

By substituting Eqs. (23) into (21), the kinetic energy can be
written as

K ¼ 1

2
_q>O _q>�O

h i
MO þWð Þ _qO

_q �O

� �
(29)

We can construct the subexpression KO, which retains a quadratic
form of

KO ¼
1

2
_q>O 0

h i
MO

_qO

0

� �
(30)

so that KO � 0. This means that KO can be treated as the kinetic
energy of a subsystem.

Similarly, we can partition the potential energy into two com-
ponents. To see this, consider the definition for the potential
energy

PðqÞ ¼
X
n¼1

mjhjðq;HÞg (31)

It is also possible to partition this energy into

P ¼ POðqO;HOÞ þ P �O (32)

by extracting the terms in the summation that belong to qO and
HO. Since P depends only on position state information, any sub-
expression PO will also depend on only position state information
and as such can be considered a new potential energy. Thus, the
subexpression LO is Lagrangian and defines a Lagrangian subsys-
tem. The dynamics of this system are

MOðqO;HOÞ€qO þ COðqO; _qO;HOÞ _qO þ NOðqO;HOÞ
¼ Cðq; _q;H; v; uOÞ þ BOuO (33)

where MO 2 Rb�b is the mass matrix for the subsystem, CO 2
Rb�b is the corresponding Coriolis/centrifugal matrix, and NO 2
Rb�1 is a gravitational force vector. Torques generated by both the
interaction with the unmodeled system L �O and the inner loop
control v are represented by C, while the torques applied by local
actuators and their mapping into the subsystem are represented by
the term BOuO.

A generalized energy can be defined for this subsystem and
used in a constructive analysis, similar to Sec. 3, to arrive at a
decentralized PBC for the subsystem. We begin with

EOðqO; _qO;HO;C; tÞ ¼ KO þ PO �WOðqO; _q>O ;C; tÞ (34)

where

WO ¼
ðt

0

_q>OC ds (35)

and define a storage function for the decentralized subsystem as

SO qO; _qO;HO;C; tð Þ ¼ 1

2
EO � EOrefð Þ2 (36)

Then, we follow the procedure applied in Sec. 3.1 to go from
Eqs. (7) to (13). We take the time-derivative of SO to find

_SO ¼ ðEO � EOrefÞð _EO � _EOrefÞ (37)

and EO to find

_EO ¼
d KO þ POð Þ

dt
� dWO

dt

¼ _q>OBOuO þ _q>OC
� �

� _q>OC (38)

¼ _q>OBOuO (39)

which follows from Eqs. (33) to (35). By substituting _EO into _SO,
we find

_SO ¼ ðEO � EOrefÞð _q>OBOuO � _EOrefÞ (40)

Upon inspection of _EO, it is apparent that the generalized energy
does indeed take a constant value on the limit cycle, since _EO ¼ 0
when uO¼ 0. This means _EOref ¼ 0 on the limit cycle for the
uncontrolled subsystem. Thus, we can define a decentralized
controller

uOðqO; _qO;HO;C; tÞ ¼ �kOXOðEO � EOrefÞB>O _qO (41)

with similar passivity, saturation, and exponential convergence
properties to the centralized case.

4.2 Decentralized Analysis. The dynamics of the decentral-
ized system indicate that the control is robust to parametric error,
which can be realized by considering the partitioning schemes for
Eqs. (26) and (27). The parametric error can be captured by a set
He, where each element he 2 He is the difference between an
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estimated parameter and the true parameter. This implies the gen-
eralized inertia tensorMj and the body Jacobian element ji;k will
have corresponding error terms. However, if we use the estimated
parameters in the partitioning scheme, then the errors will be
absorbed into the remainder term W and will propagate into the
decentralized dynamics through C. By Eq. (39), the generalized
energy for this system with error will still have a conserved value
along the limit cycle. Essentially, the estimated parameters can be
used to determine and track the subsystem reference energy,
regardless of parametric error.

One of the interesting properties of this decentralized controller
is that it has immediate implications for the storage function of
the centralized system. This controller ensures convergence of the
decentralized system to the target reference energy EOref , but it
also makes the storage function for the centralized system con-
verge to some finite energy value that emerges due to the new
dynamics. This is because uO can be considered as a passive input
to both systems, which implies _EO ¼ _E. Thus, in the continuous
dynamics EO ! EOref as uO ! 0, and E will converge to some
steady-state error relative to Eref. When uO¼ 0, the biped is still
under the influence of the inner loop control v, and still has a sta-
ble limit cycle. Therefore, the discrete dynamics should cause
E! Eref as seen in Fig. 3.

4.3 Decentralized Simulations. This section explores the
behavior of the biped with two different decentralized PBCs while
comparing them among each other, to the centralized PBC, and to
the biped with only PD control. The motivation behind these com-
parisons is to gain an understanding for the potential application
to an exoskeleton. The centralized PBC represents the theoretical
case if we could get perfect measurements of the human parame-
ters and motion, while the decentralized cases represent the com-
promise made by the choice of the system model. The PD control
alone represents the human walking without any assistance.
Again, all the PBC controllers were saturated at 50 N�m.

We have the two decentralized controls Uf;Un and the central-
ized control U. The main difference between the two decentral-
ized controls is the model information that they use. Specifically,
Uf utilizes the same full model parameter set H as the centralized
control U, but it restricts the state information to a vector xO local
to the stance leg such that

xO ¼ ½px; py;/; ha; hk; _px; _py;
_/; _ha ; _hk �> (42)

The second decentralized PBC Un uses the restricted state infor-
mation xO and also uses a restricted model parameter set

HO ¼ fmf ;ms; If ; Is; lf ; lsg (43)

that is also local to the stance leg. This is essentially modeling the
stance leg as a completely separate subsystem. This gives rise to
subsystems with generalized energies EfðxO;HÞ and EnðxO;HOÞ
that are used to construct the controls Uf and Un, respectively.
The energy En has a physical interpretation: it is the energy of the
stance shank and foot. The energy Ef does not have such an intui-
tive meaning.

In order to implement the decentralized controllers Uf and Un,
we need target reference energies for each of them at each contact
configuration. These can be found in simulation by simply com-
puting the value of their generalized energies over the nominal
limit cycle of the biped under PD control alone. We see in Fig. 6
that the decentralized energies take constant values on the limit
cycle, as expected. Since the construction of En ignores the major-
ity of the mass and inertia terms of the biped system, it is expected
that its value along the limit cycle is significantly smaller com-
pared to the other two energies. In contrast, when Ef is compared
to the real system energy E, it has an increased virtual potential
energy, which makes it larger than E.

4.3.1 Storage Convergence. We constructed an experiment
of four simulations with a perturbation to the biped’s initial
condition on the limit cycle. The independent variable is the con-
trol method used in each simulation. The control parameters for
all three PBC controllers were kept the same, with X ¼
½0; 0; 0; 1; 1; 0; 0; 0�I8�8 and k¼ 1, which limits actuation to the
stance side knee and ankle. The same perturbation to the state of
the biped on the limit cycle at heel strike Dxo ¼ ½08�1; 0:4 _qo� was
used in each simulation. Since the point of introducing control
into the system is to make the entire biped system converge back
to the limit cycle, we examined the centralized storage function
that utilizes the full state and model parameter information. By
contrast, the storage function of one of the decentralized systems
only gives information about the convergence of a portion of the
biped.

From Fig. 7, we can see that the behavior for the PBC Un is
very close to the system with PD control only, while the decentral-
ized PBC Uf is very close to the “best case” scenario of the cen-
tralized system. Again, the convergence rate back to the limit
cycle is significantly faster for U and Uf than for Un and PD con-
trol alone. This confirms that there a gain in performance from the
partitioning scheme in Sec. 4 to generate Uf rather than simply
modeling the stance leg as a localized subsystem to generate Un.
The decentralized control Uf does not converge quite as quickly
as U, but this is to be expected since it does not utilize the full
state feedback.

This plot exemplifies the points made in Secs. 6 and 5 about the
connections between the implementation method and storage

Fig. 6 Generalized energy of all three systems while traversing
the limit cycle. There is a break in the y-axis of the graph to
accommodate the difference in average magnitude of the
energy trajectories.

Fig. 7 System storage function across PBC implementations
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injection. The reason why the decentralized control Un essentially
acts like the biped with PD control alone is because the magnitude
of the energy error is small compared to the other PBCs. This
means less storage is injected to the system at each impact and
since this storage does not accurately account for the “real dis-
tance” to the limit cycle, the control is less effective. The decen-
tralized PBC Un resembles the performance of to the centralized
control U precisely because the generalized energy for that decen-
tralized subsystem is close to the centralized energy.

4.3.2 Robustness. The robustness properties of each system
are characterized by the gait sensitivity norm. We performed a
simulation experiment to examine this across an array of different
scaling gains k for each control while maintaining the same
weighting matrix X ¼ ½0; 0; 0; 1; 1; 0; 0; 0�I8�8. This allows a rig-
orous comparison of the robustness of the different controls. The
results of this experiment are displayed in Table 2. This table
demonstrates the same relationship observed in the storage analy-
sis; that U and Uf are similar in behavior while Un acts more like
PD control alone. Also, there is a strict ordering of the control
methods across all the selected gains, in terms of robustness, that
correlates with the amount of information available to the control.
In other words, utilizing a larger information set to construct the
PBC makes the biped more robust. While the table seems to indi-
cate that increasing the scaling gain always makes the gait more
robust, this is not always the case. For example, increasing the
gain of the centralized control to k¼ 100 makes the reciprocal of
the gait sensitivity norm 1=jj@g=@ejj2 ¼ 2:0055, and increasing
further still to k¼ 1000 makes 1=jj@g=@ejj2 ¼ 0:001, which is a
large decrease in robustness. These results reveal that there exists
a limit on the scaling gain such that exceeding the limit actually
makes the system performance worse.

4.4 Model Parameter Error. In this section, we explore the
effect of parameter error in the energy function of the decentral-
ized control Uf. Based on the results in Sec. 4.3, this control

represents the best version that could be implemented on a weara-
ble device. However, it is practically guaranteed that measures or
estimates of the inertia of the user will have some error. Further-
more, we believe that the characteristics of the parameter error in
this scenario should generalize to the other control cases based on
the analysis at the end of Sec. 4 and results in Sec. 4.3. An exam-
ple simulation is given in Fig. 8 that uses Uf with control parame-
ters X ¼ ½0; 0; 0; 1; 1; 0; 0; 0�I8�8; k ¼ 1, and a set of arbitrarily
chosen model parameter errors of 630% difference from the
parameters in H. It is perturbed off the limit cycle at heel strike
by Dxo ¼ ½08�1; 0:4 _qo�. It is important to note that the reference
energies are calculated with the inaccurate model parameters and
then used in the control with the same error. This method ensures
the storage function is zero along the limit cycle and also is reflec-
tive of a real-world implementation.

Even with model parameter error, the decentralized control still
causes the biped to converge to the limit cycle in less steps than
without PBC, as seen in Fig. 8. During heel contact of the second
and third step, it seems that the storage function is larger than the
non-PBC case but this behavior is transient and quickly disap-
pears. In addition, the value of the reciprocal gait sensitivity norm
for the control with parameter error is 1=jj@g=@ejj2 ¼ 0:6614,
which is greater than the non-PBC system.

To investigate the general behavior of the PBC under model
parameter error, we ran an experiment with consistent control
parameters where we calculated the gait sensitivity norm for the
system with 30 random sets of model parameter errors. The error
multiple for each parameter l 2 H was a uniform random variable
in 60.3, and we calculated the parameter error norm as the two-
norm of all these error values. A scatter plot of the results is given
in Fig. 9. All of the values on the plot are significantly larger than
the gait sensitivity norm for the PD control alone. These results
support the idea discussed in Sec. 5, that as long as the scheme for
calculating the storage injection at each impact correlates with the
energy of the system, the control should make the system more
robust. The major point of the experiment is to show the efficacy
of the PBC under random parametric error and not some “cherry-
picked” values.

5 Adaptive Reference Energy

In Sec. 3.1, an assumption about the magnitude of the velocity
norm was given in order to bind the convergence of the storage
function. This technical detail can be removed by utilizing a time-
varying reference energy, as opposed to a constant reference
energy, as seen in Ref. [40]. With this technique, the storage func-
tion remains the same though its time-derivative changes to

_S ¼ ðE� ErefÞð _q>Buu� _ErefÞ (44)

Table 2 Reciprocal of the gait sensitivity norm calculated
across controllers and scaling gains

Reciprocal of gait sensitivity norm (1=jj@g=@ejj2)

k¼ 0.01 k¼ 1 k¼ 10

U 0.1614 0.6614 3.0454
Uf 0.1594 0.3345 2.2086
Un 0.1584 0.1597 0.1755

PD 0.1584

Fig. 8 System storage function for a decentralized PBC with
perfect model parameters versus a decentralized PBC with ran-
dom 630% error in the model parameter

Fig. 9 Robustness of decentralized control versus model
parameter error norm with k 5 1
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In Ref. [40], the adaptation law for the reference energy is

_Eref ¼ krefðE� ErefÞ (45)

which when combined with the control law Eq. (13), results in

_S ¼ ðE� ErefÞð�kjj _qjj2XðE� ErefÞ � krefðE� ErefÞÞ (46)

¼ ðE� ErefÞ2ð�kjj _qjj2X � krefÞ (47)

where kref is an adaptation gain that can be utilized for design.
This shows that even when jj _qjj2X ¼ 0, the storage function is
bounded by

SðtÞ � Sð0Þe�2kref t (48)

which gives an absolute, deterministic convergence rate. How-
ever, the association of a constant reference energy with a specific
desired limit cycle of the system is lost.

5.1 Adaptive Simulation. In this section, we explore the
effect of the variation of the adaptation gain kref in a time-varying
reference energy. As mentioned in Sec. 5, if the norm of the joint
velocities becomes zero, then we lose the exponential conver-
gence of the storage function, but this can be addressed by the
time-varying energy. We choose to use the centralized U in these
simulations, with parameters of X ¼ ½0; 0; 0; 1; 1; 0:001; 1; 0�I8�8

and k¼ 1. In Fig. 10, we show some example cases of the system
with the perturbation Dxo ¼ ½08�1; 0:4 _qo� off the limit cycle at
heel strike. The storage function in this figure uses the constant
reference energies from Fig. 2, not the time-varying energy, in
order for the storage to be a valid metric for convergence to the
limit cycle. However, we stress that the control has an adaptive,
time-varying reference energy as input. As the figure shows, hav-
ing a high adaptation gain kref makes the system behave as if the
PBC was inactive. This is because the adaptation causes the refer-
ence energy to converge to the current system energy very quickly
without dissipating error from the original limit cycle. The figure
also indicates the system converges back to the desired limit cycle
regardless of the adaptation gain.

6 Discussion on Implementation

In the application to wearable devices, all of the control
methods appear to require knowledge of human joint torques and/
or the interaction forces between the user and the device. Distin-
guishing between forces caused by nominal walking behavior and

forces caused by a disturbance is not a trivial task. However, here
we suggest an implementation of the PBC that allows us to short-
cut these challenges.

By considering the generalized system energy Eq. (5) and its
derivative Eq. (10), we can rewrite the energy as

E ¼ Einitðqþ; _qþÞ þ
ðt

0

_q>Buu dt (49)

¼ Einit � k

ðt

0

ðE� ErefÞ _q>BuXB>u _q (50)

where Einit is the mechanical energy at t¼ 0, since Wð0Þ ¼ 0 by
convention. Equation (49) implies that a PBC implementation
could determine the value of Eref on the limit cycle, update the
postimpact mechanical energy Einit at each impact, and continu-

ously measure the velocities B>u _q at the actuated joints. This
method can be used for both the centralized and decentralized
controllers.

The trade-off of this implementation is a loss of disturbance
rejection in the continuous dynamics. As previously stated, this is
caused by not accounting for torques generated outside of the
PBC. However, external disturbances will cause a change in the
pre-impact state, which should propagate to a change in the post-
impact mechanical energy, which will change Einit. This indicates
that the PBC will begin to react to the disturbance at the start of
the next step.

The control implementation is equivalent to a scheme for
injecting a finite amount of storage

Sinit qþ; _qþ
� 	

¼ 1

2
Einit qþ; _qþ

� 	
� Eref

� 	2
(51)

at impact and then allowing the control to dissipate it. The intu-
ition behind the PBC is that this value should quantify the
“distance” in the energy space to the desired limit cycle. Though
we derive the method for calculating Sinit based on a model, the
decentralized analysis suggests that it is valid to use any metric
that becomes zero on the desired limit cycle. It should also corre-
late with the system energy in such a way that the notion of hybrid
passivity in Ref. [31] is preserved from one stride to the next (i.e.,
the impact dynamics dissipate the metric).

In addition, there are other schemes for choosing the postimpact
storage update. For example, the method in Ref. [1] adds a term
into Sinit to push the biped toward a desired walking speed that is
different from the original target limit cycle. It is well known that
a biped’s walking speed correlates with kinetic energy [9,41],
which provides some intuition as to why this is effective. Since
walking speed is only one feature of a walking gait, this idea
could be extended to account for a wider variation of tasks in a
neighborhood of a known limit cycle.

7 Conclusion

We conclude that a decentralized PBC can be generated that
has performance close to the centralized control by maximizing
the use of available state and model parameter information. We
also show that control can improve the robustness and conver-
gence of the biped to the limit cycle, even in the presence of
model parameter error. This decentralization directly addresses
the challenges introduced by the application to wearable devices,
since the human user represents a highly complex unmodeled
dynamical system. The control is also passive, which has been
used in teleoperation [42] and has useful properties for the general
domain of human–machine interaction by ensuring that the energy
output of the system is bounded by the human input. This could
help us design controllers for wearable robots that are responsive
to the human input while also having confidence in the safety and
stability of the device and user. One of the limitations of this work
is the issue of implementation on a physical system. The

Fig. 10 System storage function for the centralized PBC with
various adaptation gains. The scaling gain k 5 1 is used across
all cases. The PD control by itself is given for comparison.
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implementation method we suggest does not attempt to measure
the external forces applied to the system in the continuous dynam-
ics, which may limit the responsiveness of the control method.
However, we believe that the method can still impart benefits,
such as an increase in the basin of attraction. The authors plan to
implement this method in hardware and perform physical experi-
mentation as future work.
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