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Abstract— Task-invariant control paradigms can enable lower-
limb exoskeletons to provide assistance for their users across
various locomotor tasks without prescribing to specific joint
kinematics. As an energetic control method, energy shaping
can alter a human’s body energetics in the closed-loop to
provide gait benefits. To obtain the energy shaping law for
underactuated systems, a set of nonlinear partial differential
equations, called the matching condition, needs to be solved to
determine the achievable closed-loop dynamics. However, solving
matching conditions for high-dimensional nonlinear systems is
generally difficult. In addition, how to define parameters for
the closed-loop dynamics that render the optimal exoskeleton
assistance remains unclear. In this paper, we proposed a two-
layer, human-in-the-loop optimization framework for lower-
limb exoskeletons to customize their assistance to human users.
The inner-layer optimization finds solutions to the matching
condition, meanwhile following the energy trajectories of a
virtual reference model defined based on the self-selected
gaits of humans and a scaled version of their anatomical
parameters. The outer-layer incorporates human-in-the-loop
Bayesian Optimization to update reference energy’s parameters
for reducing metabolic costs. Simulation results on two biped
models demonstrate that the proposed framework can solve
matching conditions numerically at the selected timestamps
and the associated energy shaping strategies can reduce human
metabolic cost. Moreover, exoskeletons torques calculated using
an able-bodied subject’s kinematic data well match human
biological torques.

I. INTRODUCTION

Lower-limb exoskeleton’s control paradigms can be di-
vided into two broad categories, i.e., enhancing physical
abilities for able-bodied subjects and assisting individual
with disabilities [1]. Most exoskeleton control methods for
movement assistance and rehabilitation are designed for tasks
to be carried out in a specific environment based on a
particular task [2]. These task-specific control approaches
are designed to follow certain trajectories that cannot be
easily changed across subjects and locomotor tasks. Once the
locomotor task changes, the exoskeleton needs to identify
this change via pattern recognition systems and selects the
corresponding new trajectory. This makes task-specific control
algorithms more effective in gait rehabilitation that requires
repetitive movements [3]. Different from gait rehabilitation,
exoskeletons designed for assisting volitional human motion
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should be able to accommodate different daily activities [4],
which cannot be captured by the current control paradigms.

Trajectory-free, task-invariant paradigms could provide
more flexibility to allow volitional human motion and possibly
eliminate the need to switch between multiple trajectories
[1]. As one example, human muscle activation can be
measured via Electromyography (EMG) sensors and used
as feedback signals for exoskeleton control design to assist
human locomotion [5], [6]. However, performance of EMG
sensors is suspectable to measurement noises, placement
of electrodes, and sweating [7]. Although there exist other
control paradigms that are trajectory-free, they are specifically
designed for dedicated tasks such as sit-to-stand [8] and
stair ascent [9]. Energy shaping and passivity-based control
paradigms [10], [11] can enable exoskeletons to provide
task-invariant assistance by reducing the user’s perceived
body weight without knowledge from reference kinematic
trajectories, therefore have the potential to provide consistent
assistance across different daily activities.

While prior research on energy shaping has demonstrated
beneficial results, two problems remain unsolved. The first
one is the difficulty in solving matching conditions for high-
dimensional systems with varying degrees of underactuation.
To obtain an energy shaping control law for underactuated
systems, the matching condition, which is a set of nonlinear
partial differential equations (PDEs), needs to be solved to
determine achievable closed-loop dynamics. To tackle this
problem, previous studies [12], [13] managed to simplify
nonlinear PDEs into quadratic or linear PDEs. However, these
approaches either rely on assumptions that the shape variables
being cyclic in the mass matrix [13] or mechanical energy is
only dependent on actuated coordinates [12]. The associated
theorems have only been applied to simple systems such
as an inverted pendulum on a cart [14] and the beam-ball
system [15]. These simplification methods cannot be applied
to complex human-exoskeleton dynamics, which often include
multiple degrees of freedom (DoFs) and the associated mass
matrix is dependent on shape variables in general. While Lv
et al. proposed the equivalent constrained dynamics in [16] to
simplify the satisfaction of matching condition, the obtained
solutions only form a subset of the entire solution set.

The second problem appears to be the choices of closed-
loop dynamics that can lead to beneficial gait effects. Human-
in-the-loop (HIL) optimization [17]–[20] has been applied
to customize parameters for exoskeleton assistance to reduce
metabolic costs. By measuring human respiratory data in
real-time, algorithms such as Covariance Matrix Adaptation
Evolution Strategy [19] and Bayesian Optimization (BO)
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[18] were applied to customize parameters of human joint
torque profiles for minimizing metabolic costs during walking.
Similarly, Gordon et al. leveraged musculoskeletal modeling
techniques to evaluate simulated metabolic cost metrics online
so that the convergence speed of HIL optimization can be
greatly increased [20]. Reinforcement Learning has also been
applied to update an impedance controller’s parameters for
tracking desired knee trajectories [17] or customize control
parameters of assistive torque profiles [21]. However, most of
these methods aim to optimize the parameterized assistance
torque for a specific activity. It is unclear if these proposed
methods can be translated into other locomotor tasks and
receive the same outcome through customizing the same
parameters of a given torque profile. A paradigm shift
from task-specific, trajectory-based customization to task-
invariant, trajectory-free customization is needed for lower-
limb exoskeletons to assist volitional human motion.

To address these two issues, we proposed a two-layer
HIL optimization framework that can numerically solve the
matching condition at selected points along a human-selected
trajectory and customize closed-loop human energetics to
generate optimal exoskeleton assistance. In the inner layer,
we find solutions to the matching conditions at selected
timestamps and track a reference energy. This reference
energy is defined based on a reference model, whose states
are defined based on a human user’s self-selected gaits and
its inertial parameters are scaled versions of real human
anatomical parameters. Between two adjacent timestamps,
we used a Gaussian process regression (GPR) model to
interpolate the solutions to the matching condition and
calculate the corresponding torques. The outer layer optimizes
the parameters of the reference energy to minimize the
metabolic costs of human walking through BO. The rest
of the paper is organized as follows: Sec. II introduces the
biped’s dynamics and reviews energy shaping control. Sec.
III puts forward the two-layer optimization framework. Sec.
IV demonstrates the simulation results on two biped models
and simulated exoskeleton torques based on an able-bodied
subject’s kinematic data. Finally, we draw conclusions and
discuss future research directions in Sec. V.

II. DYNAMICS AND ENERGY SHAPING REVIEW

A. Biped Dynamics

A human wearing an exoskeleton is modeled as a kinematic
chain from the stance leg to the swing leg with respect to
an inertial reference frame (IRF) [16]. We added a torso to
the biped due to its positive effect on maintaining human
walking stability [22]. The equation of motion (EoM) of an
n-DoF biped can be expressed as

Mq̈ + Cq̇ +N +ATλ = τ, (1)

where q ∈ Q is the generalized coordinates vector with Q
being the configuration space, q̇ and q̈ are the corresponding
angular velocity and acceleration vectors, M ∈ Rn×n is
the inertia matrix, C ∈ Rn×n is the Coriolis/centrifugal
matrix, and N ∈ Rn is the gravitational forces vector.
The input torque τ = τhum + τexo consists of the human

input τhum = Hv and the exoskeleton input τexo = Bu,
where B = [0m×(n−m), Im×m]T ∈ Rn×m and H =
[0p×(n−p), Ip×p]

T ∈ Rn×p are matrices that map the ex-
oskeleton actuator torque u ∈ Rm and the human joint torque
v ∈ Rp into the overall dynamics. The term A ∈ Rc×n

is the constraint matrix defined by taking the gradient of
c holonomic contact constraints and λ is the associated
Lagrange multiplier [23]. During human walking, holonomic
contact constraints vary in different gait phases that result in
different A and λ. In [16], Lv et al. introduced equivalent
constrained dynamics by plugging the expression of ATλ
into (1) to generate a unified biped model across gait phases.
The equivalent constrained dynamics can be expressed as

Mλq̈ + Cλq̇ +Nλ = Bλu+Hλv, (2)

where detailed definitions for all the dynamic terms can be
found in [16].

B. Energy Shaping Control

Assuming an energy shaping control law exists (i.e., the
matching condition is satisfied), it can shape the original
dynamics (1) into the desired form

M̃ q̈ + C̃q̇ + Ñ +AT λ̃ = H̃v, (3)

where M̃ , C̃, Ñ , λ̃, and H̃ are dynamic terms in the closed-
loop. Prior studies [16] show that compensating for human’s
inertial parameters is beneficial in assisting human gaits. In
this paper, we define the terms M̃ , C̃ and Ñ by scaling
the inertial parameters of the human and exoskeleton as
m̃i = ki · mi, Ĩi = ki · Ii, ki > 0, where (mi, Ii) are the
inertial parameters of link i in the original dynamics (1). Note
that we are not confining ki to be a constant, but rather a
function of the system’s states over time.

Given (2), the desired equivalent constrained dynamics in
the closed loop can be expressed as

M̃λq̈ + C̃λq̇ + Ñλ = H̃λv, (4)

where M̃λ, C̃λ, Ñλ and H̃λ are defined similarly to the terms
in (2) but with scaled inertial parameters. We showed in our
prior research [23] that the closed-loop dynamics (4) and
(3) are equivalent, i.e., shaping (1) into (3) is equivalent to
shaping (2) into (4).

When a system is underactuated, the matching condition
needs to be satisfied to determine achievable closed-loop
dynamics with limited actuators [12]. Based on the equivalent
constrained dynamics (2) and its desired form (4), the
matching condition can be expressed as [16]

B⊥
λ [MλM̃

−1
λ (H̃λv − C̃λq̇ − Ñλ)

+Cλq̇ +Nλ −Hλv] = 0, (5)

where B⊥
λ ∈ R(n−m)×n is the full-rank left annihilator of

Bλ, i.e., B⊥
λ Bλ = 0 and rank(B⊥

λ ) = (n−m) [12]. Once
the matching condition (5) is satisfied, the control law that
shapes (2) into (4) can be expressed as

u = (BT
λBλ)

−1BT
λ [Cλq̇ +Nλ −Hλv (6)

−MλM̃λ
−1

(C̃λq̇ + Ñλ − H̃λv)].
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III. OPTIMIZATION FRAMEWORK FORMULATION

This section introduces a two-layer optimization framework
that incorporates HIL optimization for customizing energy
shaping strategies, where the overall structure is shown in
Fig. 1. When a dynamic system has multiple DoFs, solving
matching condition (5) in real-time is a great challenge.
Instead of obtaining its closed-form solutions, we try to solve
the matching condition at selected timestamps tj numerically.
At a given state q, matrices Mλ, Cλ and Nλ are constants,
and the closed-loop terms M̃λ, C̃λ and Ñλ are matrices of m̃i

and Ĩi. In other words, the matching condition (5) becomes
a linear matrix equation at selected states, which is easier
to solve compared to PDEs. The overall framework consists
of two layers: an inner layer that aims to find solutions to
the matching condition at selected timestamps meanwhile
tracking the reference energy from a virtual reference model,
and an outer layer that customizes the parameters of the
reference energy to minimize energy expenditure.

A. Virtual Reference Model

To construct this framework, we will first need to define
the virtual reference model. The reference model has the
same configuration vector as (1), i.e.,

Mref q̈ + Cref q̇ +Nref +ATλref = τhum, (7)

where Mref , Cref , and Nref are defined similarly to the terms
in (1) but with a scaled version of human inertial parameters:

mref
i = αi ·mi, I

ref
i = αi · Ii. (8)

Parameters mi, Ii, and αi are the mass, inertia, and reference
model parameter of the i-th human link, respectively. We
will specify the choices of αi for different biped models in
Sec. IV. Note that q and q̇ in (7) are identical to the ones
in (2), i.e., both are from an individual’s self-selected gaits.
Faraji et al. showed that changing mass of different body
segments has different effects on human metabolic cost [24].
We therefore chose to define inertial terms in (7) with scaled
inertial parameters, hoping the energy shaping law will enable
exoskeletons to shape human body energetics for mimicking
the behaviors of reference model (7).

B. Inner Layer Optimization

The inner layer tries to find ki to satisfy the matching
conditions (5) and track the reference model’s energy at
selected timestamp tj . The closed-loop inertial parameters
m̃i and Ĩi of (4) are defined as

m̃i = ki(q(tj), q̇(tj)) ·mi, Ĩi = ki(q(tj), q̇(tj)) · Ii, (9)

where ki ≥ 0 is a function of the state (q(tj), q̇(tj)).
At selected timestamp tj , the inner layer optimization is
formulated as

min
ki∈[Kmin, Kmax]

finner = (Eref − Eclosed)
2,

s.t. B⊥
λ [Cλq̇ +Nλ −MλM̃

−1
λki

(C̃λki
q̇ + Ñλki

)] = 0,

B⊥(Hλ −MλM̃
−1
λki

H̃λki
)v = 0,

|τexo| < sat,

where M̃λki
, C̃λki

, ˜Nλki
and H̃λki

are dynamic terms scaled
by ki at timestamp tj , “sat” is the saturation for exoskeleton
torque, Eref and Eclosed are energy-related terms of the
reference model (7) and closed-loop system (4) at timestamp
tj , respectively. In this paper, we defined Eref and Eclosed to
be kinetic energies, total energies, and Lagrangians for both
(7) and (4). Because we scaled inertial parameters in M to
define M̃λki , it still represents the inertia matrix of a robot
with different masses and inertia, thus the positive definite
property always holds true [25]. The MATLAB function
fmincon was used to acquire the parameter ki.

Between two adjacent timestamps, we used a GPR model
to interpolate values for ki [26] and calculate control law
(6). We assume ki(q(tj), q̇(tj)) is distributed as a Gaussian
process, i.e.,

ki(q(tj), q̇(tj)) = Gaussian Process(µ, σ), (10)

where µ is the expected value for ki and σ is the covariance
matrix that are updated based on values for ki from the
previous step.

C. Outer Layer Optimization

The outer layer is designed to update reference energy’s
parameters using HIL BO to minimize metabolic cost, i.e.,

min
αi∈[αmin, αmax]

f = Emeta + f1,

s.t. M̃λq̈ + C̃λq̇ + Ñλ = H̃λv,

eig(M̃λ) > 0,

where αi > 0 is bounded within [αmin, αmax] to exclude
excessive exoskeleton torques. The cost function f consists
of two parts: a metabolic cost function Emeta and a penalty
function f1. In this paper, we adopted a simulation-based
metric by assuming human joint torque square is proportional
to the muscle activation [27]:

Emeta =

∫ T

0
v2i (t)dt

T (mgl)2
≈

∑NT

j=1v
2
i (j)∆t

T (mgl)2
, (11)

where T is the step time period, vi is the human joint torque,
NT is the number of timesteps in the simulation, m is the
overall mass of the biped, l is the length of the biped leg,
and g is the gravitational constant.

We included f1 in the cost function to penalize unstable
cases during walking. In this paper, we check the stability
numerically through examining the eigenvalues of the lin-
earized Poincaré map P : S → S, where x∗ = P(x∗) is the
intersection point between periodic orbits and the switching
surface S from one step to the successive step. If eigenvalues
of the linearized Poincare map ∇xP(x

∗) at the fixed point x∗

are within the unit circle, the periodic orbit O is exponentially
stable [28]. The function f1 is therefore defined as

f1 =

{
0 |eig(∇xP(x

∗))|max < 1,

β ln(|eig(∇xP(x
∗))|max) |eig(∇xP(x

∗))|max ≥ 1,

where β > 0 is the punishment coefficient. Pseudocode for the
overall optimization framework can be found in Algorithms 1
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 Update energy shaping parameters to track  
 while satisfying matching condition

Energy shaping
controller

Human-exoskeleton
model

Human policy

 Update reference
model parameters

Human-exoskeleton system
Inner layer optimization

Outer layer optimization

Reference model

Fig. 1. Overall diagram of the two-layer optimization framework. Highlighted regions in yellow, pink, and purple indicate the human-exoskeleton system,
inner loop, and outer loop of the framework, respectively. We used the MATLAB function fmincon in the inner loop to find the energy shaping parameters
ki that satisfy the matching condition, and HIL BO in the outer loop to update the reference energy’s parameters αi.

and 2. In Algorithm 2, P (f) is the Gaussian process prior dis-
tribution model, P (f |D) is the posterior distribution defined
based on the set D which includes reference model parameters
and values of f , and A(α|P (f |D)) is the acquisition function
that selects the next reference model parameters [29].

Algorithm 1 Inner Layer Optimization
1: Initialize state (q(t0), q̇(t0));
2: for Timestamp tj , j = 0, 1, · · · , T do
3: Calculate reference model energy Eref ;
4: if At selected timestamp then
5: Use fmincon to find parameters ki;
6: else
7: Use GPR to interpolate parameters ki;
8: end if
9: Calculate energy shaping torque u(tj , ki);

10: Solve dynamics (4) and update (q(tj+1), q̇(tj+1));
11: end for

IV. SIMULATION & DISCUSSION

In order to verify the performance of the proposed
optimization framework, we conducted simulations on a 4-
DoF point-feet and an 8-DoF biped model, both with a torso
(Fig. 2), with different combinations of ki and αi. Because
pelvic anterior and posterior only tilt slightly during human
walking [30], we added an angular constraint to the torso
so that it is always perpendicular to the walking direction
to avoid the definition of extra DoFs. Bipedal locomotion
in general can be modeled as a hybrid system with both
continuous dynamics and discrete dynamics at impacts [28].
The hybrid dynamics of a general biped can be expressed as{

Mq̈ + Cq̇ +N +ATλ = τ, q− /∈ S,

q̇+ = ∆(q̇−), q− ∈ S,
(12)

where ∆ is the associated impact map [28].

A. 4-DoF Biped Model

The generalized coordinates for the 4-DoF biped model
are given as q4D = (ϕ, θk, θh, θsk)

T ∈ R4, where ϕ is the

Algorithm 2 Outer Layer Optimization
Reference energy parameters Initialization: Initialize ref-

erence model parameters αi(0) ∈ [αmin, αmax];
Optimization initialization: Initialize Bayesian P (f) ;

1: Obtain metabolic cost of passive walking Emeta(0);
2: Calculate the cost value f(0) = Emeta(0) + f1(0);
3: for l = 0, 1, · · · , iteration do
4: Update dataset D = {(αi(r), f(r)), r = 0, 1, · · · , l};
5: Perform BO to update P (f |D);
6: Select αi(l + 1) = argmax

αi

A(αi|D);

7: Controlled walking to get Emeta(l + 1);
8: if Unstable then
9: f1(l + 1) = β ln(|eig(∇xP(x

∗))|max);
10: else if Stable then
11: f1(l + 1) = 0;
12: end if
13: Calculate the cost value f(l + 1) = Emeta(l + 1) +

f1(l + 1);
14: end for

𝑥
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Fig. 2. 4-DoF (left) and 8-DoF (right) biped models used in simulation. The
solid lines and dashed lines indicate the stance and swing legs, respectively.
The IRFs for both models are defined at the biped’s stance foot.

angle between the stance shank and the vertical axis, θk
and θsk are the stance and swing knee angles, and θh is the
hip angle. We implicitly modeled the contact constraints in
the dynamics so that the term ATλ does not show up in
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the EoM. We assumed both knee and stance ankle joints
are actuated by human as well as exoskeleton torques,
i.e., τhum−4D = [0, vk, vh, vsk]

T ∈ R4, and τexo−4D =
[0, uk, uh, usk]

T ∈ R4. To approximate human joint torques,
we used a Proportional–Derivative (PD) controller vi =
−KPi(qi − q̄i)−KDiq̇i, i ∈ {k, h, sk}, where KPi and KDi

are the proportional and derivative gain matrices, and q̄i is
the equilibrium point of the i-th joint. During simulation, we
first tuned the PD gain matrices to generate a stable limit
cycle for the biped walking down slope and then implemented
the optimization framework to conduct simulations. For the
4-DoF biped model, We adopted the following ways to define
the closed-loop dynamics (4):

Case 1: (m̃i, Ĩi) = k1·(mi, Ii), i ∈ {shank, thigh, hip, torso}
Case 2: (m̃shank, Ĩshank) = k1 · (mshank, Ishank),

(m̃i, Ĩi) = k2 · (mi, Ii), i ∈ {thigh, hip, torso}
Case 3: (m̃shank, Ĩshank) = k1 · (mshank, Ishank),

(m̃thigh, Ĩthigh) = k2 · (mthigh, Ithigh),

(m̃i, Ĩi) = k3 · (mi, Ii), i ∈ {hip, torso}

For defining reference energy Eref , Browning et al. [31]
show that adding extra masses at the distal end of human
lower extremities will have greater influence on the overall
metabolic cost. We therefore embraced this philosophy to
separately scale the shank and other limb masses as

mref
shank = α1 ·mshank, Irefshank = α1 · Ishank,

mref
i = α2 ·mi, Irefi = α2 · Ii, i ∈ {thigh, hip, torso}

B. 8-DoF Biped Model

The generalized coordinates of the 8-DoF biped model
are given as q8D = (px, py, ϕ, θa, θk, θh, θsk, θsa)

T ∈ R8. In
addition to the configuration vector for the 4-DoF model,
θa and θsa indicate the stance and swing ankle angles,
px and py are the heel coordinates with respect to the
IRF. Impacts happen when the swing heel contacts the
ground and subsequently when the stance foot slaps the
ground. The human input torque vector is τhum−8D =
[01×3, va, vk, vh, vsk, vsa]

T ∈ R8, where each joint torque
vi, i ∈ {a, k, h, sk, sa} is defined as a PD controller as in
Sec. IV-A. All these joints are also actuated by the exoskeleton
torque, i.e., τexo−8D = [01×3, ua, uk, uh, usk, usa]

T ∈ R8.
We defined the desired inertial parameters for (4) to be
(m̃i, Ĩi) = k1 · (mi, Ii), i ∈ {foot, shank, thigh, hip, torso}.
We chose to define the reference energy for (7) as

mref
i = α1 ·mi, Irefi = α1 · Ii, i ∈ {foot, shank, thigh}

mref
j = α2 ·mj, Irefj = α2 · Ij, j ∈ {hip, torso}

All parameters used for simulation are summarized in
Table. I, where “(8)” and “(4)” in the first column indicate
the parameters for the 8-DoF and 4-DoF models, respectively.

C. Results & Discussion

Fig. 3 demonstrates values for ki and energy tracking
performance of the 4-DoF biped throughout the optimization

TABLE I
BIPED MODEL AND SIMULATION PARAMETERS

Parameter Variable Value
Torso mass mto 25.07 [kg]
Hip mass mh 6.66 [kg]
Thigh mass mt 9.457 [kg]
Thigh moment of inertia It 0.1995 [kg·m2]
Shank moment of inertia Is 0.0369 [kg·m2]
Shank mass (4) ms 5.053 [kg]
Shank mass (8) ms 4.053 [kg]
Foot mass (8) mf 1 [kg]
Slope angle γ 0.095 [rad]
Full biped torso length lto 0.504 [m]
Full biped thigh length lt 0.428 [m]
Full biped shank length (4) ls 0.435 [m]
Full biped shank length (8) ls 0.428 [m]
Full biped heel length (8) la 0.07 [m]
Full biped foot length (8) lf 0.2 [m]
Hip equilibrium q̄h −0.5 [rad]
Stance knee equilibrium q̄k −0.05 [rad]
Swing knee equilibrium (4) q̄sk 0.01 [rad]
Hip proportional gain (4) Kph 101.05 [N·m/rad]
Hip derivative gain (4) Kdh 13.07 [N·m·s/rad]
Swing knee proportional gain (4) Kpsk 121.26 [N·m/rad]
Swing knee derivative gain (4) Kdsk 14.07 [N·m·s/rad]
Stance knee proportional gain (4) Kpk 303.15 [N·m/rad]
Stance knee derivative gain (4) Kdk 15.84 [N·m·s/rad]
Swing knee equilibrium (8) q̄sk 0.2 [rad]
Swing ankle equilibrium (8) q̄sa −0.25 [rad]
Stance ankle equilibrium (8) q̄a 0.01 [rad]
Hip proportional gain (8) Kph 182.250 [N·m/rad]
Hip derivative gain (8) Kdh 35.1 [N·m·s/rad]
Swing knee proportional gain (8) Kpsk 182.25 [N·m/rad]
Swing knee derivative gain (8) Kdsk 18.9 [N·m·s/rad]
Swing ankle proportional gain (8) Kpsa 145.80 [N·m/rad]
Swing ankle derivative gain (8) Kdsa 0.81 [N·m·s/rad]
Stance ankle proportional gain (8) Kpa 486.00 [N·m/rad]
Stance ankle derivative gain (8) Kda 18.52 [N·m·s/rad]
Stance knee proportional gain (8) Kpk 486.00 [N·m/rad]
Stance knee derivative gain (8) Kdk 18.52 [N·m·s/rad]

process. We scaled the inertial parameters to define (4)
following Cases 1 to 3 in Sec. IV-A, and Eclosed and Eref

were chosen as the total energy for (4) and (7) in finner,
respectively. From this figure, we can see that when less than
two energy shaping parameters were used (i.e., k1 and k2),
the proposed algorithm quickly (within four steps) finds their
values that satisfied the matching condition (5) in the inner
layer. When three energy shaping parameters were selected,
the increase in parameter numbers provides more options
for satisfying the matching condition, therefore trajectories
of ki do not exhibit periodic behaviors. For all cases, the
closed-loop energy well tracks the reference energy, except
for the slight fluctuation in the third case.

Fig. 4 depicts the relationship between cost function value
f and the reference parameters α1 and α2 for the 8-DoF
biped, where Eclosed and Eref were chosen as the Lagrangian
of (4) and (7) in finner. The results indicate that the cost
function value decreases with the reduction of α1 and α2.
This coincides with the experimental results in [24] that
reducing masses on human limbs decreases metabolic costs
during walking. In addition, body segments associated with α2

(hip and torso) play a more dominant role in determining the
values for the cost function f . The optimal cost function value
is indicated by the red “*” that lies between α1 ∈ [0.8, 1]
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Fig. 5. The change of ki throughout the optimization process (top row) and the associated total energy tracking (bottom row) for the 4-DoF model. From
left to right: Case 1, 2, 3 (Sec. IV-A). The origin energy is defined as the total energy of the passive gaits.
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and α2 = 0.6. Due to the passive nature of the simulation
biped, we can only reduce inertial parameters of (7) to a
certain degree, after which there will be insufficient energy
to maintain a stable gait. The singular point in the top-
right corner and the bottom-left region (black dots) indicates
unstable cases, where the penalty function penalizes the
unstable cases to increase the value f .

Fig. 4. Relationship between cost function f and reference model parameters
α1 and α2 for the 8-DoF biped. The optimal value of the cost function f
is indicated by the red “ ∗ ” after 50 times BO iteration.

Fig. 5 compares the optimal cost value f with function
evaluations for the 8-DoF biped model. We selected Eref and
Eclosed to be the kinetic energy, total energy, and Lagrangian
for dynamics (7) and (4) in finner, respectively. For each
case, BO evaluated the cost function 20 times before getting
a steady value of the cost function, where we let the biped
walk for 10 steps before calculating the human metabolic
cost. The results show that f of all cases converged to a
steady value within 200 steps.

Metabolic cost reductions of both the 4-DoF and 8-DoF
bipeds with different energy tracking cases are shown in
Fig. 6. Because human anatomical parameters are difficult to
be measured accurately, we therefore added random numbers
with mean value 1 and standard deviation 0.02 as noises
to each of the human inertial parameters to incorporate
parametric errors. Adding such noises is equivalent to adding
±5% uncertainty to each of the inertial parameters, which

Fig. 5. Optimal cost value f vs. function evaluations for kinetic energy,
total energy and Lagrangian tracking of the 8-DoF biped.

is considered to be acceptable in past biomechanics studies
[32], [33]. From Fig. 6, we can see that tracking the kinetic
energy, total energy, and Lagrangian of the reference model
(7) all rendered metabolic cost reduction, among which kinetic
energy tracking rendered the most metabolic reduction. For
comparison, we also simulated the metabolic cost on an 8-
DoF model that has the same configuration as the one in
Fig. 2 but without the torso. Having a torso will help the
biped better maintain balance, and the torso mass is dominant
compared to other leg segments, thus shaping the torso mass
is beneficial in assisting human gaits. The associated optimal
reference energy parameters are shown in Fig. 7.

Finally, we plotted the exoskeleton torques using an able-
bodied subject’s kinematic data from [34] and the optimized
parameter k1 for all inertial parameters based on the 8-DoF
model in Fig. 8. We defined Eclosed and Eref in finner to be
the kinetic energy (blue), total energy (green), and Lagrangian
(black) of (4) and (7), respectively. We can see that for all
cases, the calculated exoskeleton torques highly approximate
real human biological torques, which is beneficial as the
optimized parameters will enable exoskeletons to compensate
for human joint torques that could possibly lead to human
effort reduction in practice.

V. CONCLUSIONS & FUTURE WORK

This paper proposed a two-layer, HIL optimization frame-
work for customizing exoskeleton assistance. The inner-layer
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Fig. 7. Optimal reference energy parameters α1 and α2 for the 4-DoF and
8-DoF biped models.

is designed to find solutions of the matching condition
and tracks a virtual reference model’s energy, which is
defined based on a human subject’s self-selected gaits and
scaled anatomical parameters. The outer layer adopts HIL-
based BO to update the reference energy for minimizing
metabolic costs. Simulation results on two biped models
demonstrated the efficacy of the proposed framework, i.e.,
it was able to find solutions to the matching condition
and tracks the defined reference energy, meanwhile the
generated exoskeleton assistance reduced metabolic costs.
Moreover, exoskeleton torques calculated using an able-
bodied joint kinematics with customized energy shaping
parameters highly align with human biological torques. Future
work includes refining the framework to find solutions to
the matching condition along the entire trajectory of the
model states, conducting passivity and stability analyses, and
experimentation on physical applications.
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Fig. 6. As the state changes, the energy shaping parameters ki change in the 4-DoF model. The reference model parameters α1 and α2 are derived from
the BO simulations. From left to right, the number of parameters ki goes from 1 to 3. For the first simulation, k1 is for the mass and moment of inertia of
all links. For the second simulation, k1 is for the shank and k2 are for the thigh, hip and torso. For the third simulation, k1 is for the shank, k2 is for the
thigh and k3 are for the hip and torso. The second row of figures depicts energy of different systems. The origin energy is the system total energy without
changing the mass and inertia. The ref energy is the reference model energy.
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