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Assisting Human Locomotion
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Abstract— Kinematic control approaches for exoskeletons
follow specified trajectories, which overly constrain individuals
who have partial or full volitional control over their lower limbs.
In our prior work, we proposed a general matching framework
for underactuated energy shaping to provide task-invariant,
energetic exoskeletal assistance. While the proposed shaping
strategies demonstrated benefits such as reduced human torques
during walking, it remains unclear how the parameters of
these shaping strategies are related to different gait benefits.
Meanwhile, research indicates that customizing assistance via
online optimization can substantially improve exoskeleton’s
performance for each individual. Motivated by this fact, we com-
bine derivative-free, sample-efficient optimization algorithms
with our energy shaping strategies to propose a task-invariant
learning framework for lower-limb exoskeletons. Through rapid
online optimization, this framework enables exoskeletons to
adjust shaping parameters for minimizing human joint torques
across users and tasks. Simulation results show that shaping
strategies with optimal parameters effectively reduce human
joint torques and estimated metabolic cost during simulated
walking. In addition, the optimal exoskeleton torques calculated
using able-bodied subjects’ kinematic data closely match the
real human joint torques for different walking gaits.

I. INTRODUCTION

The majority of powered lower-limb exoskeletons adopt
kinematic control methods to replicate normative joint kine-
matics [1]-[4]. These devices follow trajectories associated
with one specific task and user at a time [5], which do
not translate well across continuously varying locomotor
tasks or changes in user behavior. While this may be useful
for individuals who cannot volitionally control their lower
limbs, individuals with at least some volitional control
ability should be allowed to choose their preferred gait
patterns or make corrections during gait therapy. Moreover, in
order to accurately track different reference trajectories, task
recognition is often required in practice, which is currently
difficult to achieve [6]. A paradigm shift from task-specific,
kinematic control approaches to task-invariant approaches is
needed for exoskeleton control design.

Instead of enforcing kinematic trajectories, we can enforce
energetic goals to provide exoskeletal assistance with greater
freedom and flexibility. As a kinetic control method, energy
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shaping has been applied to bipedal locomotion to create
natural, efficient gaits based on passive dynamics [7], regulate
a biped’s walking speed [8], and facilitate 3D walking gaits
via control reduction [9]. In our prior work [10], we proposed
an energetic control approach that shapes the potential and
kinetic energies of the human body through the actuators
of an exoskeleton in the closed loop. By shaping potential
energy, torques can be generated to counteract gravity to yield
the so-called body-weight support (BWS), which offloads
the perceived weight of the user’s lower extremities and
center of mass (COM). By shaping kinetic energy, we can
assist the subject’s acceleration/deceleration by compensating
inertial terms along the diagonal [11] or in all entries
[10] in the bottom-right part of a mass matrix. Simulation
results on total energy shaping [12] and experimental results
on potential energy shaping [10], [13] have demonstrated
potential beneficial results in assisting different gaits.

Despite these promising results, it remains unclear how the
choices of energy shaping parameters are related to different
gait benefits. The shaping parameters in prior work, i.e.,
the BWS ratio and the inertia scaling factors, were chosen
arbitrarily based on intuitions. In stroke gait rehabilitation, the
BWS ratio is usually chosen by clinicians based on empirical
data [14]. As the subjects make progress through training,
the clinicians will gradually lower the BWS percentage to
provide less support and allow more independence. While this
is apparent for gait rehabilitation, choosing parameters for gait
augmentation is not straightforward. For gait augmentation,
a key metric for evaluating an exoskeleton is whether it
reduces the human user’s metabolic cost of walking [15].
Prior work [16], [17] showed that rapid, customized assistive
strategies obtained via human-in-the-loop optimization led
to substantial metabolic reduction during walking. However,
these approaches only focus on optimizing exoskeleton torque
for one joint during certain phases of a gait cycle. Generalizing
these results to simultaneously optimize control parameters
for multiple actuators throughout the entire gait cycle can
possibly yield more benefits for gait augmentation.

To address these issues, we present a task-invariant
learning framework for lower-limb exoskeletons to optimize
exoskeleton actuator torques during various activities. Instead
of optimizing parameters for a single joint’s kinematic
trajectory, we optimize parameters of the previously proposed
energy shaping strategies for multiple human joints. To
formulate the framework, we choose the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [18] and Bayesian
Optimization (BO) [19] given their prevalence in bipedal
locomotion related research [16], [20]. We use the integral
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of squared human joint torques proposed in [21] as our cost
function, where the human torque is calculated through the
Euler-Lagrange dynamics. By minimizing this cost function,
we minimize the correlated muscle activation, which in
turn is believed to be correlated with metabolic cost [22].
Because of the task-invariant property of our energy shaping
strategies, the proposed framework enables an exoskeleton
to automatically select optimal control parameters to assist
individuals with various activities.

The rest of the paper is organized as follows: we begin in
Section II by reviewing the human-exoskeleton dynamics and
prior results on energy shaping. In Section III, we introduce
CMA-ES and BO to formulate the task-invariant learning
framework. Finally, we show benefits for gait augmentation
with simulations on an 8-degree of freedom (DOF) biped
and the exoskeleton torques computed based on able-bodied
subjects’ kinematic data in Section IV.

II. DYNAMICS AND ENERGY SHAPING
A. Human and Exoskeleton Model

We first review the sagittal biped model and its dynamics
presented in [10]. For simplicity, we combine the biped’s two
hip joints into one and assume the biped’s mass consists of
the mass of exoskeleton links and human legs. The planar
biped shown in Fig. 1 is modeled as a kinematic chain with
respect to an inertial reference frame (IRF). Depending on
whether the exoskeleton is unilateral or bilateral, we choose
to model the stance and swing legs separately (unilateral case
[12]) or the entire lower body as a kinematic chain from
the stance foot to the swing foot (bilateral case [11]). By
explicitly modeling contact constraints in the dynamics, the
equations of motion can be expressed as

MG+ Cq+ N+ ATX =7, (1)

where M € R™ ™ is the positive-definite mass matrix
with n being the number of DOFs, C' € R"*™ is the
Coriolis/centrifugal matrix, and N € R™ is the gravitational
forces vector. The configuration space is given as Q =
R? x T(=2), and the corresponding configuration vector
is ¢ = (0x, 0y, 0, ¢7)7 € R™, where T("~2) is the (n — 2)
torus, 0y and 6, are the Cartesian coordinates with respect
to the IRF, and 6,;, € S! is an absolute angle defined with
respect to the vertical axis. The shape vector ¢, € R" 3
contains joint angles based on the biped model. The matrix
AT € R™*¢ is the constraint matrix defined as the gradient
of the holonomic constraint functions, and ¢ is the number
of contact constraints that change during different contact
conditions. The Lagrange multiplier A is calculated using the
method in [23] as

A=A+ AT, (2)
where

A=WI[Aj— AM~Y(C§+ N)], (3)
A=WAM™', W =(AM~1AT)" 1.
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Because we are modeling the human body and the exoskeleton
as a whole, the torque 7 = Thum + Texo at the right-hand side
of (1) comprises both the human and the exoskeleton input
terms, Thum = Bv + JTF and Teyxo = Bu, respectively. The
mapping matrix B € R™*P maps both the human muscle
input term v € RP and the exoskeleton actuator torques
u € RP into the dynamics. Without loss of generality, we
assume B takes the form of [0, (n—p), Ipxp}T. In general,
the vector F' includes the interaction forces between the
modeled subsystem and the connected un-modeled links. For
unilateral models, the body Jacobian matrix J* € R™*3 maps
the interaction forces F' = (Fy, Fy, M,)" € R? in Tjyuy into
the dynamics, where (FY, F},)T indicates two linear forces,
and M, indicates a moment in the sagittal plane. For bilateral
cases, we combine stance and swing leg models and implicitly
model F' in the equations of motions of the kinematic chain.

Fig. 1. Kinematic model of the human body and the exoskeleton(s). The
stance leg is shown in solid black and the swing leg in dashed black. The
IRF is defined at the heel (shown here), and (x, 0y ) is chosen as the heel
position (px,py) for the model used in simulation.

B. Holonomic Contact Constraints

The single-support period of human walking can be
separated into heel contact, flat foot, and toe contact phases,
as shown in [10, Figure 11]. The general form of holonomic
contact constraints encountered during these conditions can
be expressed as relations between the position variables, i.e.,

a(Q17q27~'7QC) :chla (4)

where ¢; denotes the i-th element of the configuration vector
q. Based on different contact conditions, there are ¢ = 2
constraints for heel contact and toe contact, whereas flat foot
has ¢ = 3. In this paper, we assume the constraint matrix A
has the constant form

A= vqa((ha q2, - qc) = [chc 0c><(n—c)}~ )

The constant form (5) (i.e., A = 0) can be achieved by
defining the IRF at the stance toe during toe contact and
at the stance heel during heel and flat foot contact. Note
that for a unilateral model’s swing leg, there are no contact
constraints defined, i.e., A = 0.

C. Shapeable Dynamics

In this section, we review the equivalent constrained
dynamics (ECD) and our prior results on the shapeable
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dynamics of ECD. We omit the detailed matching proof
and refer the readers to [10].

By plugging the expressions for A and A into (1), we can
obtain the ECD of (1) as

Myi+ Cxg+ Ny = Byv + J{ F + Byu, (6)
where

My =M,
=T -ATWAMY)C,
N,\ = (I -ATWAM™Y)N,
By=(I—-ATWAM")B,
JE = (I - ATwAMHJT. (7)
Dynamics in the form of (6) has fewer or zero unactuated
DOFs compared to the generalized dynamics (1) without

constraints. Given the open-loop dynamics (6), we define the
desired closed-loop ECD as

Myj+ Cxg+ Ny = Byvo+ JI'F, (8)

where My = M is the mass matrix in the closed-loop ECD
and is assumed to be positive-definite. The remaining terms
in (8) are given by

W = (AM—lAT) : ©)

with C and N being the dynamics terms of (1) in closed
loop. The detailed choices of these closed-loop dynamics
terms will be specified later in the simulation section.

Our prior work [10] shows that the matching condition for
mechanical energy is satisfied with the following choice of
closed-loop dynamics

- |: M,

M2 T N(l,n—p)
) V| |

M4 ’ N(71,—p+1,n)

where M; € R(=P)x(n=p) \f, € RV-PIXP A, € RPXP,
By shaping these dynamics, the matching condition for the
human input term will be automatically satisfied. The control
law that brings (6) into (8) becomes

u= Bl [Cxi+ Nx— MA\M; " (Crg+Ny)l,  (10)

where B = (BT B,)~'BY is the left pseudo inverse of B,.

III. LEARNING FRAMEWORK FORMULATION

In this section, we first review the algorithms of CMA-
ES and BO. We then incorporate them with the previously
proposed energy shaping to propose a task-invariant learning
framework.
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A. Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES is a sample-efficient method for real-parameter
optimization of nonlinear, non-convex function [18]. This
optimization strategy comprises both measurement noise
during real-time experiments and human adaptation [16],
which makes it an ideal candidate for our approach. The
detailed algorithm is shown in Algorithm 1, where definitions
for hyper-parameters are shown in Table 1.

The basic two perspectives of this algorithm, recombination
and mutation, can be interpreted as selecting a new mean
value mC*1) for the distribution and adding a random vector
z’,”:rl. The next generation mean value m*+1) represents the
best estimation of optimal control parameters obtained after
current population, and new candidate solutions are sampled
according to a multivariate normal distribution N(0,I) €
R™. The terms C, o, py, and p. are updated following
the standard procedure in [18], and w; is chosen based on
empirical data.

Algorithm 1 CMA-ES
1: Initialize X
2: Initialize [q, q]
3: Initialize m©, ¢(©), C(©, p, () p (©
parameters

> shaping parameters
> conditions for simulation
> CMA-ES

4: for i = 0 to Iter do

5: for k = 1to x do > sample new population

6 2™~ N(0,T)

7: XSH) =m0 + a(i)BngJrl) > sample
candidate solution

8: simulate walking until convergence

9: if stability guaranteed then

10: 1 =1+ 1, compute cost function

11: end if

12: end for ,

13: m0+h = 11 ijE.le)) . > sort the best ~y
candidates

14:  if gait stable with m(“+1) then

15: update [q, ¢], CUFY, (D) p G+ p (+1)

16: else

17: t=10—X

18: end if

19: end for

B. Bayesian Optimization

BO is a noise-tolerant and sample-efficient global op-
timization method, which selects new parameters using
non-parametric regression models and principled metrics
[24]. BO consists of two main components: a Bayesian
statistical model for modeling the objective function, and
an acquisition function for deciding where to sample next
[25]. After evaluating the objective function based on some
initial conditions, BO optimizes the acquisition function to
select the next sample point.

The whole algorithm is shown in Algorithm 2. Similar to
CMA-ES, the input X is the set of energy shaping strategy
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TABLE I
PARAMETERS OF CMA-ES

Parameter Definition
X Population size
Tter Total iteration number
X Control parameters set
¥ Number of shaping parameters
m® Mean value of the i-th iteration
o@ Step size of the i-th iteration
c® Covariance matrix of the i-th iteration
B,D Orthogonal and diagonal matrices
wj Weight of X, Z _wj=1
Po Evolutionary path for o
Pc Evolutionary path for C

parameters, Iter is the total iteration number. The cost function
is denoted as f, and data set D composes of different sets
of previously generated X. As in standard literature [24],
P(f) is a Gaussian process prior, P(f|D) is the distribution
posterior, and C(X|P(f|D)) is the acquisition function. The
state [g, g] will be updated corresponding to the change of
X only if the generated gait is stable and the value of cost
function is lower than previous iterations.

Algorithm 2 Bayesian Optimization
1:

Initialize X > shaping parameters

2: Initialize [g, ] > conditions for simulation
3 f(X) > objective function
4: BAYESOPT(f, X, Iter) > Bayesian optimization
5: function y = f(X)

6: simulate walking until convergence in [g, ¢]

7: if stability guaranteed then

8: compute cost function

9: end if

10: end function

11: function BAYESOPT(f, X, Iter)

12: fmln = f(X)

13: for n =1 to Iter do

14: P(f|D) = [ P(D|f,0)P(f)P(#)dd > Bayes

rule

15: X,, = argmax C(X|P(f|D))

16: Call y, = f(X,)

17: if y, < fmin then

18: fmin = Yn

19: end if

20: D=DU{X,,yn} > augment data
21: if ¥, = fhin and gait stable then
22: update [q, ¢|
23: end if

24: n=n+1

25: end for

26: end function

C. Optimization Formulation

Prior research [22] indicates that muscle activation squared
is correlated with metabolic cost. By assuming that human
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joint torque squared is correlated to muscle activation squared,
authors of [21] proposed a simulation-based metric for
metabolic cost as

T

P [ ®dt SN2 () AL(i)
0 'hum 1=1"hum
Za T(mgl)? ~ T(mgl)? b

j=1

where T is the step time period, Np is the number of
timesteps in the simulation, At¢(4) is the i-th timestep, m
is the overall mass of the biped, and [ is the length of the
leg. We divide the human torque squared by 7'(mgl)? in (11)
to isolate the effects of changing gait characteristics so that
human joint torque squared can be compared across different
shaping strategies. Finally, our optimization problem can be
formulated as:

N

p T .2 - At .
minimize ZO‘JZ“ i= lThum(Z)2 (4)
X j=1 T (mgl)
subject 0 Thum = MxG + Crg + Na,

cig(My) > 0,X C X,
[Texo| < sat,

Stability checked by Poincaré section method

where “sat” is the saturation for exoskeleton torques, and
X is the set of parameter ranges (will be specified later
for different shaping strategies). Based on prior results [10],
reducing mass and/or inertial parameters in the shapeable
part of the inertia matrix can possibly reduce metabolic cost
during simulated walking. However, reducing inertial and
mass parameters arbltrarlly n M4 cannot ensure the positive
definiteness of My. We therefore include eig(M)) > 0 as a
constraint in the formulation to avoid non-positive definite
inertia matrix in the closed loop.

Note that the Poincaré section method is only used in
simulation to ensure gait stability. In practice, we can establish
a passive relationship from human input to joint velocity
similar to [12] to ensure safe human-robot interaction. Also,
estimating human joint torque in the cost function depends
on the available sensors of an exoskeleton, e.g., IMU sensors
and encoders for measuring joint kinematics.

IV. SIMULATION RESULTS AND DISCUSSION

To simulate human-like walking gaits, we consider the
coupled dynamics of the two legs shown in Fig. 1, which is
termed as the full biped model and is modeled as a kinematic
chain with respect to the IRF defined at the stance heel. The
configuration vector of the full biped model is given as 6 =
(9)(7 9y7 eabv qZ)T (pxupy> ¢7 eaa 9k7 ehy 951(7 esa)T S RS,
where (0x,0y)7 = (px,py)T are the Cartesian coordinates
of the stance heel, 0,, = ¢ is the stance heel angle defined
with respect to the vertical axis. The shape vector is defined
as qs = (0a, 0k, 0h, 05k, 052)T, 0. and O, are angles of the
stance and swing ankle, 6y and 6 are angles of the stance
and swing knee, and 6}, is the hip angle between the stance
and swing thighs. The model and simulation parameters were
adopted from [10, Table IJ.
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A. Hybrid Dynamics and Stability

Biped locomotion can be modeled as a hybrid dynamical
system that includes continuous and discrete dynamics. For
the biped model we used in this paper, impacts happen
when the swing heel contacts the ground and when contact
constraints change between the heel contact and flat foot
conditions. The following sequence that includes hybrid
dynamics and impact maps during one step is a review of
Section V-B in [12]:

1. ME+N+AL N=7+7m if agat # 0,
2. 07 = (I —W(AgaW) " Agar )0~ if agas = 0,
3. MO+N+AL N=7+m if |cp(0,0)] < I,
4. 0 =07,000) 02T =R if |ep(6,0)] = Iy,
5. MO+N+AL N =1 +m, if H(0) # 0,
6. (0%,67) =D ,67) if H(0) =0,

where M € R®*® is the inertia matrix of the full biped model,
and N € R® groups the model’s Coriolis and gravitational
forces. The definitions for other dynamic terms can be found
in [10]. Note that the vector ¢, (6, 6) is the COM position
defined with respect to the heel IRF and is used as a flag to
detect contact conditions in simulation.

The overall torque input consists of both the human input
vector 7, € R® and the exoskeleton input vector 7, € RS.
We assume the human input takes the form of a set-point PD
controller that generates a stable limit cycle while walking
down a shallow slope:

o= [01x3, —(6— 91)TK§§ — 0 K§)",

where Kpi, Kqi, 6, and 0; are constant values corresponding
to the stiffness, viscosity, actual angle, and equilibrium angle
of each joint, respectively. This form of human input is merely
an assumption we make to simulate human walking, which
does not represent real human neuromuscular input.

Due to the difficulty of analytically proving stability for hy-
brid systems in general, we checked local stability numerically
by applying the Poincaré method. Letting z = (67,07)7 be
the state vector of the full biped, a walking gait corresponds
to a periodic solution curve Z(t) of the hybrid system such
that z(t) = z(t + T), for all ¢ > 0 and some minimal
T > 0. The set of states occupied by the periodic solution
defines a periodic orbit O := {x|z = Z(t) for some ¢} in the
state space. The step-to-step evolution of a solution curve
can be modeled with the Poincaré map P : § — §, where
8§ = {z|H(#) = 0} is the switching surface indicating initial
heel contact [26]. The intersection of a periodic orbit with
the switching surface is a fixed point z* = P(z*). We can
linearize the Poincaré map about this point to analyze the
local stability of the hybrid dynamical system according to
the standard result in [27]. If the eigenvalues of the Jacobian
V. P(x*) are within the unit circle, where * = 8 N O, then
the periodic orbit O is locally exponentially stable in the
hybrid system. The eigenvalues are calculated in simulation
by first allowing the biped to converge to a fixed point and
then by performing the perturbation analysis [28].
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B. Energy Shaping Strategies

In our prior work, we chose to compensate for lower-limb
inertia in the actuated part of a mass matrix, leaving the mass
terms unshaped. In this section, we propose energy shaping
strategies to shape all inertial terms in M.

1) Defining My: An interesting fact about the inertia
matrix is the “cyclic-like” property on where the mass and
inertia terms show up [9]. While traversing from the top-
left corner to the bottom-right corner of the mass matrix,
the number of links whose parameters appear in the matrix
gradually decreases, indicating that each “layer” of the matrix
carries a different weight in the overall kinetic energy. We
respect this inherent property of the inertia matrix and choose
the definition as

kiMga)y  k1My,5) k1M 4,8
kiMs4)  kaMs 5 koM 5.8

= |AMeo FMes Ll
kiMsa)  k2M(s5) ksMs.8)

where K1 = [k1, ko, ..., ks] € R® is the parameter set to be
determined and optimized. During simulation, we found out
that for M being positive definite, k£, and ko have to equal
one. Therefore, the optimization problem reduces to finding
the parameter set K1 = [k, k4, k5] € R3.

As an alternative, we define My by scaling only the
diagonal terms in My by Ko = [kr, ko, k,] € R? | ie.,

~ oo kM M M
N — »M6.6) (6,7) (6,8) 13
4 M)y keMzz Mg (13)
Mgy Men kMg

2) Defining N: Our prior definition of N in [29] scales
all the shapeable rows by the same BWS ratio . However,
this definition is only valid during fully-actuated contact
conditions, e.g., the flat-foot condition. During heel and toe
contact conditions, we cannot retrieve a valid closed-loop
potential energy from this definition. Therefore, we adopt
the definition presented in [30], i.e., only shape gravitational
forces of each link that are perpendicular to the stance foot,
to define N so that a valid potential energy can be retrieved
across the entire gait cycle. These two strategies for potential
energy can be represented as

'5/1‘5] € R57

s = Tixs €R, g = [, o, -

where ps indicates using the same scaling factor i1 and pgq
indicates having a different p; for each row of N, respectively.
Having parameters i = 1 or p; = 1 implies not shaping the
potential energy, i.e., N = N. More details regarding these
definitions can be found in [30].

C. Results and Discussion

During simulation, we first tuned human joint impedance
by trial and error to find a stable nominal gait. We then
applied CMA-ES and BO to generate new populations of
control parameters given some initial conditions. For both
optimization algorithms, we simulated walking for 10 steps to
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allow the gait to converge before computing the corresponding
metrics. Once the gait converges, we applied the Poincaré
section method to check the stability of the hybrid period
orbit after each generation for CMA-ES, while for BO this
stability was checked after each iteration. This corresponds
to the “stability guaranteed” in Algorithms 1 and 2.

We chose different values for parameters in the sets K1, Ko,
s, and pg to conduct simulation, where all eight different
cases were chosen as shown in Table II. Note that strategy
1 includes the best hand-tuned parameters we found that
yielded the most human torque reduction.

To ensure credible performance, we ran both the CMA-ES
and BO six trials for each case in Table II. For safety reasons,
we set the saturation for exoskeleton torque to be 50 Nm,
and confined the values of f and p;,7 € {1,...,5} to be
within [0.4, 1.6] and k; to be within [0.75, 1.25], respectively.
As opposed to the previous definitions in [10] which confined
shaping variables to be less than one for providing assistance,
we relaxed this condition in this paper, as adding virtual
weight could possibly help humans swing their legs forward
during late swing phase [31].

TABLE II
ENERGY SHAPING STRATEGIES FOR OPTIMIZATION

Strategy Number Control Parameters X
1 k3 =0.9, ka = 0.8, ks = 0.5, n =0.9
2 Only k4 of K1, ps
3 K1, ps
4 Kd
5 K1, pa
6 Different X1, pg for each contact phase
7 Ko, Hs
8 Ko, pa

1) Human Torque Reduction: We show torque reduction
(11) with different strategies in Fig. 2. Each bar represents the
average of calculated metabolic cost over six trials. In general,
CMA-ES and BO output similar results for each strategy.
Based on the ascending trend from strategy 2 to 3, we can
conclude that shaping more limb mass and inertia in M, leads
to more torque reduction. The similarity between strategies 4
and 5 shows that potential energy shaping is more dominant
in deciding the overall reduction compared to kinetic energy
shaping. The ascending trends from strategy 3 to 5 as well as
strategy 7 to 8 indicate that having different potential energy
shaping parameters are more helpful. Comparing strategies 3
and 7, as well as strategies 5 and 8, we can see that shaping
the diagonal elements in M, plays a more significant role
than shaping the off-diagonal terms, i.e., the effect of shaping
non-diagonal terms is almost negligible.

Finally, strategy 6 adopts three different sets of (K1, uq)
for each contact condition, and this strategy outmatches the
other cases in terms of reduction percentage. The optimal
parameters of this strategy are given in Table III, where
each cell includes both the parameters from CMA-ES and
BO (before and after “/”, respectively). We can see that
some of the parameters are greater than one, which verifies
our assumption that adding virtual weight and inertia can
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TABLE III
OPTIMAL CONTROL PARAMETERS OF STRATEGY 6

CMA-ES/BO | Heel Contact Flat Foot Toe Contact
ks 1.009/1.072 | 0.931/0.862 | 0.958/1.011
kq 1.096/1.098 | 1.051/0.894 | 1.075/0.981
ks 1.005/1.101 | 0.924/0.918 | 0.984/1.038
1 0.936/1.022 | 0.993/1.088 | 0.994/1.090
L2 1.084/0.743 | 1.056/1.146 | 1.025/0.868
u3 1.078/1.108 | 0.763/0.874 | 0.993/1.011
L4 1.094/0.834 | 0.729/0.570 | 1.139/1.152
us 1.029/0.743 | 0.584/0.530 | 1.101/1.140
X
=
B
= IoCMA-ES }

S 0o BO {

S 20% |

S

=]

w»n

8 10% |

o

g

=

=

g 0% = T T T
E 1 2 3 4 5 6 7 8

Strategy Number

Fig. 2. The human torque sum reduction (compared to the passive gait)
for different strategies using CMA-ES and BO with +1 standard deviation.

be actually helpful in providing assistance. We also tried
to simulate walking using different sets of Xy and ps for
each contact condition. However, positive definiteness of M,
cannot be ensured.

2) Metabolic Cost Reduction: To further study the benefits
of the proposed framework, we adopted the following metric

Eyalking = (Esvp + Ecr + Eac)/n + Ews, (14)
T
d
Farp — GTMG)| T dt,
3LP /0 [dt(2 Q)]
1~
Ecr = 5]\/{7}37 Ecc = leeg}((e).%
T . O b
Fws :/ Miegg cos(B)l Sln(?)ekmaxq)( : )dt,
0 kmax

proposed in [32] to compute the metabolic cost of simulated
walking with each strategy. The first term FEspp in (14)
represents the swing and torso balance cost of the 3-link
linear pendulum model, the second term Ecgr denotes the
energy cost to compensate for the COM vertical velocity
change due to impacts. The third term Egc denotes the
cost of maintaining proper ground clearance, and the last
term Fhyyg indicates the weight support cost. Among these
definitions, miee is the overall mass of the leg, v, is the
vertical COM velocity, 3 is the stance leg angle with respect
to gravity, [; is the thigh length, n = 0.25 is the assumed
muscle efficiency, and ®(-) is the Alexander-Minetti’s cost
curve [32].
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Fig. 3. The mean and %1 standard deviation of Ey,1king calculated based
on different strategies with optimal parameters. The zero line in y-axis
indicates the metabolic cost of passive gait.

Similar to Fig. 2, we computed the mean value and the
standard deviation of Eyalking across six trials for each
strategy and compare them with the cost of the passive gait.
From Fig. 3, we can see that all strategies are able to reduce
metabolic costs, among which strategy 6 yields the most
reduction. These data not only comply with the conclusion we
draw from Fig. 2 but also indicate the proposed strategies can
effectively reduce metabolic cost during simulated walking.

3) Normative Kinematic Data: To demonstrate the pro-
posed framework is capable of providing task-variant assis-
tance across subjects and tasks, we compute exoskeleton
torque (10) using able-bodied human subjects’ normative
kinematic data [33] with parameters from Table III. Fig. 4
compares estimated exoskeleton joint torques for the decline,
level and incline conditions, respectively.

The main phases during stance that require exoskeleton
assistance are weight absorption and push-off [34]. To assist
able-bodied persons, knee extension and ankle plantar flexion
torque should be provided via exoskeleton at terminal stance
to swing the limbs upwards. From Fig. 4, we can see
exoskeleton torques with optimal parameters closely match the
real human torques, especially at the ankle joint. Compared
to the aggressive ankle torque at terminal stance in [10], the
optimal strategies in this paper provide mild assistance, which
is critical in assisting human locomotion [31]. In addition, the
optimal shaping strategies provide necessary knee extension
torques in weight absorption as well as in late stance to
propel the body forward for all three conditions. This again
is an improvement compared to the potential energy shaping
strategy proposed in [12], which provides flexion torques
during level and incline conditions that are counterproductive.
With our prior experimental results on energy shaping across
various activities [10] and the results presented in Fig. 4, we
can safely assume the proposed task-invariant framework is
capable of finding optimal parameters across subjects and
daily activities such as stair ascent and descent.

CONCLUSION AND FUTURE WORK

In this paper, we present a task-invariant learning frame-
work for lower-limb exoskeletons to minimize human joint

torques and metabolic cost across locomotor tasks. Built
upon our prior framework on underactuated energy shaping,
we incorporate derivative-free, sample efficient optimization
algorithms, i.e., CMA-ES and BO, to automatically update the
parameters of task-invariant energy shaping strategies through
online iteration. Simulation results on a human-like biped
demonstrated that all the optimized strategies can effectively
reduce human joint torque and estimated metabolic cost.
Among these strategies, the optimal exoskeleton torques
calculated using able-bodied subjects’ kinematics closely
match real human joint torques. These torques also provide
milder assistance during weight absorption and terminal
stance, which is an improvement compared to our prior
results on potential energy shaping. Future work includes
experimental implementation on physical exoskeletons and
refining the framework to automatically search for assistive
strategies.
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